Skip to main content
Log in

Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Phytosiderophores (PS) are strong iron chelators, produced by graminaceous plants under iron deficiency. The ability of released PS to chelate iron(III), and subsequent uptake of this chelate into roots by YS1-type transport proteins, are well-known. The mechanism of iron release from the stable chelate inside the plant cell, however, is unclear. One possibility involves the reduction of ferric PS in the presence of an iron(II) chelator via ternary complex formation. Here, the conversion of ferric PS species by ascorbate in the presence of the intracellular ligand nicotianamine (NA) has been investigated at cytosolic pH (pH 7.3), leading to the formation of a ferrous NA chelate. This reaction takes place when supplying Fe(III) as a chelate with 2′-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), with the reaction rate decreasing in this order. The progress of the conversion of ferric DMA to ferrous NA was monitored in real-time by high resolution mass spectrometry (FTICR-MS), and the results are complemented by electrochemical measurements (cyclic voltammetry), which allows detecting reactive intermediates and their change with time at high sensitivity. Hence, the combined results of electrochemistry and mass spectrometry indicate an ascorbate-mediated mechanism for the iron release from ferric PS, which highlights the role of ascorbate as a simple, but effective plant reductant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderegg G, Ripperger H (1989) Correlation between metal complex formation and biological activity of nicotianamine analogues. J Chem Soc Chem Commun 647–650

  • Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbial Rev 27:215–237

    Article  CAS  Google Scholar 

  • Bienfait HF, Scheffers MR (1992) Some properties of ferric citrate relevant to the iron nutrition of plants. Plant Soil 143:141–144

    Article  CAS  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  PubMed  CAS  Google Scholar 

  • Chen SM, Chen JY, Thangamuthu R (2007) Electrochemical preparation of poly(malachite green) film modified Nafion-coated glassy carbon electrode and its electrocatalytic behavior towards NADH, dopamine and ascorbic acid. Electroanalysis 19:1531–1538

    Article  CAS  Google Scholar 

  • Cowley AB, Kennedy ML, Silchenko S, Lukat-Rodgers GS, Rodgers KR, Benson DR (2006) Insight into heme protein redox potential control and functional aspects of six-coordinate ligand-sensing heme proteins from studies of synthetic heme peptides. Inorg Chem 45:9985–10001

    Article  PubMed  CAS  Google Scholar 

  • Graziano M, Biligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Greenwald J, Hoegy F, Nader M, Journet L, Mislin GLA, Graumann PL, Schalk IJ (2007) Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. J Biol Chem 282:2987–2995

    Article  PubMed  CAS  Google Scholar 

  • Griesen D, Su D, Bérczi A, Asard H (2004) Localization of an ascorbate-reducible cytochrome b561 in the plant tonoplast. Plant Physiol 134:726–734

    Article  PubMed  CAS  Google Scholar 

  • Halle F, Meyer JM (1992) Iron release from ferrisiderophores. A multi-step mechanism involving a NADH/FMN oxidoreductase and a chemical reduction by FMNH2. Eur J Biochem 209:621–627

    Article  PubMed  CAS  Google Scholar 

  • Hider RC, Yoshimura E, Khodr H, von Wirén N (2004) Competition or complementation: the iron-chelating abilities of nicotianamine and phytosiderophores. New Phytol 164:204–208

    Article  CAS  Google Scholar 

  • Kanazawa K, Higuchi K, Nishizawa NK, Fushiya S, Chino M (1994) Nicotianamine aminotransferase activities are correlated to the phytosiderophore secretions under Fe-deficient conditions in Gramineae. J Exp Bot 45:1903–1906

    Article  CAS  Google Scholar 

  • Krüger C, Berkowitz O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  PubMed  CAS  Google Scholar 

  • Kuta J, Yeager E (1975) The influence of cations on the electrode kinetics of ferricyanide-ferrocyanide system on the rotating gold electrode. J Electroanal Chem 59:110–112

    Article  CAS  Google Scholar 

  • Lambert F, Policar C, Durot S, Cesario M, Yuwei L, Korri-Youssoufi H, Keita B, Nadjo L (2004) Imidazole and imidazolate iron complexes: on the way for tuning 3D-structural characteristics and reactivity. Redox interconversions controlled by protonation state. Inorg Chem 43:4178–4188

    Article  PubMed  CAS  Google Scholar 

  • Laulhere JP, Briat JF (1993) Iron release and uptake by plant ferritin: effects of pH, reduction and chelation. Biochem J 290:683–699

    Google Scholar 

  • Ling HQ, Koch G, Bäumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7103

    Article  PubMed  CAS  Google Scholar 

  • Lovstad RA (1998) Stimulatory effect of ascorbate on iron transfer from bleomycin to apotransferrin. Biometals 11:199–202

    Article  PubMed  CAS  Google Scholar 

  • Mies KA, Wirgau JI, Crumbliss AL (2006) Ternary complex formation facilitates a redox mechanism for iron release from a siderophore. Biometals 19:115–126

    Article  PubMed  CAS  Google Scholar 

  • Mino Y, Ishida T, Ota N, Inoue M, Nomoto K, Takemoto T, Tanaka H, Sugiura Y (1983) Mugineic acid-Iron(III) complex and its structurally analogous cobalt(III) complex: characterization and implications for absorption and transport of iron in gramineous plants. J Am Chem Soc 105:4671–4676

    Article  CAS  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253

    Article  PubMed  CAS  Google Scholar 

  • Mouithys-Mickalad A, Deby C, Deby-Dupont G, Lamy M (1998) An electron spin resonance (ESR) study on the mechanism of ascorbyl radical production by metal-binding proteins. Biometals 11:81–88

    Article  PubMed  CAS  Google Scholar 

  • Nalini B, Narayanan SS (2000) Amperometric determination of ascorbic acid based on electrocatalytic oxidation using a ruthenium(III) diphenyldithiocarbamate-modified carbon paste electrode. Anal Chim Acta 405:93–97

    Article  CAS  Google Scholar 

  • Nassef M, Radi AE, O’Sullivan C (2007) Simultaneous detection of ascorbate and uric acid using a selectively catalytic surface. Anal Chim Acta 583:182–189

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Haake C, Römheld V (1999) Improved HPLC method for determination of phytosiderophores in root washings and tissue extracts. J. Plant Nutr 22:1389–1402

    Article  CAS  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Okumura N, Nishizawa NK, Umehara Y, Ohata T, Nakanishi H, Yamaguchi T, Chino M, Mori S (1994) A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare. Plant Mol Biol 25:705–719

    Article  PubMed  CAS  Google Scholar 

  • Ouerdane L, Mari S, Czernic P, Lebrun M, Lobinski R (2006) Speciation of non-covalent nickel species in plant tissue extracts by electrospray Q-TOFMS/MS after their isolation by 2D size exclusion-hydrophilic interaction LC (SEC-HILIC) monitored by ICP-MS. J Anal At Spectrom 21:676–683

    Article  CAS  Google Scholar 

  • Radovan C, Manea F, Ciorba A, Cinghita D, Vlaicu I, Murariu M (2006) Some practical aspects regarding an application of the amperometric oxidability level concept in characterisation of waste water. Proceedings of the 13th symposium on analytical and environmental problems, Szeged, pp 265–269

  • Raoof JB, Ojani R, Kiani A (2001) Carbon paste electrode spiked with ferrocene carboxylic acid and its application to the electrocatalytic determination of ascorbic acid. J Electroanal Chem 515:45–51

    Article  CAS  Google Scholar 

  • Richter Y, Fischer B (2006) Nucleotides and inorganic phosphates as potential antioxidants. J Biol Inorg Chem 11:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    PubMed  Google Scholar 

  • Safavi A, Maleki N, Moradlou O, Tajabadi F (2006) Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal Biochem 359:224–229

    Article  PubMed  CAS  Google Scholar 

  • Sakurai K, Nabeyama A, Fujimoto Y (2006) Ascorbate-mediated iron release from ferritin in the presence of alloxan. Biometals 19:323–333

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W (2003) Iron solutions: acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188–193

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Hutcheson R, Engelmann MD, Cheng IF (2007) Cyclic voltammetric and aqueous equilibria model study of the pH dependant iron(II/III)ethylenediamminetetraacetate complex reduction potential. J Electroanal Chem 603:44–50

    Article  CAS  Google Scholar 

  • Spasojevic I, Armstrong SK, Brickman TJ, Crumbliss AL (1999) Electrochemical behavior of the Fe(III) complexes of the cyclic hydroxamate siderophores alcaligin and desferrioxamine E. Inorg Chem 38:449–454

    Article  PubMed  CAS  Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol Plant 88:522–529

    Article  CAS  Google Scholar 

  • Sugiura Y, Tanaka H, Mino Y, Ishida T, Ota N, Inoue M (1981) Structure, properties, and transport mechanism of iron(III) complex of mugineic acid, a possible phytosiderophore. J Am Chem Soc 103:6979–6982

    Article  CAS  Google Scholar 

  • Treeby M, Marschner H, Römheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant Soil 114:217–226

    Article  CAS  Google Scholar 

  • van Duijn MM, Tijssen K, van Steveninck J, van den Broek PJA, van der Zee J (2000) Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. J Biol Chem 275:27720–27725

    Google Scholar 

  • van Duijn MM, van der Zee J, vanSteveninck J, van den Broek PJA (1998) Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. J Biol Chem 273:13415–13420

    Article  PubMed  Google Scholar 

  • von Wirén N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • von Wirén N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). Plant Physiol 124:1149–1157

    Article  Google Scholar 

  • Wang B, Noguchi T, Anzai JI (2007) Layer-by-layer thin film-coated electrodes for electrocatalytic determination of ascorbic acid. Talanta 72:415–418

    Article  CAS  PubMed  Google Scholar 

  • Weber G, von Wirén N, Hayen H (2006) Analysis of iron(II)/iron(III) phytosiderophore complexes by nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 20:973–980

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Jordan RB (1990) Knietics and mechanism of the reaction of aqueous iron(III) with ascorbic acid. Inorg Chem 29:4180–4184

    Article  CAS  Google Scholar 

  • Xuan Y, Scheuermann EB, Meda AR, Hayen H, von Wirén N, Weber G (2006). Separation and identification of phytosiderophores and their metal complexes in plants by zwitterionic hydrophilic interaction liquid chromatography coupled to electrospray ionization mass spectrometry. J Chromatogr A 1136:73–81

    Article  PubMed  CAS  Google Scholar 

  • Xuan Y, Scheuermann EB, Meda AR, Jacob P, von Wirén N, Weber G (2007) CE of phytosiderophores and related metal species in plants. Electrophoresis 28:3507–3519

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Scheuermann (Hohenheim University, Germany) for supply of purified phytosiderophores, Profs. T. Kitahara and S. Mori (University of Tokyo, Japan) for supply of synthesized NA, and the Deutsche Forschungsgemeinschaft for financial support to GW (grants WE 2422/5) and to NvW (grants WI 1728/6). Financial support from the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen and by the Bundesministerium für Bildung und Forschung is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, G., von Wirén, N. & Hayen, H. Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine. Biometals 21, 503–513 (2008). https://doi.org/10.1007/s10534-008-9137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9137-8

Keywords

Navigation