Skip to main content

Advertisement

Log in

Can increased weathering rates due to future warming compensate for base cation losses following whole-tree harvesting in spruce forests?

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Whole-tree harvesting, i.e. harvesting of stems, branches and tops, has become increasingly common during recent decades due to the increased demand for renewable energy. Whole-tree harvesting leads to an increase in base cation losses from the ecosystem, which can counteract recovery from acidification. An increase in weathering rates due to higher temperatures is sometimes suggested as a process that may counteract the acidifying effect of whole-tree harvesting. In this study the potential effect of increasing temperature on weathering rates was compared with the increase in base cation losses following whole-tree harvesting in spruce forests, along a temperature gradient in Sweden. The mechanistic model PROFILE was used to estimate weathering rates at National Forest Inventory sites at today’s temperature and the temperature in 2050, as estimated by two different climate projections. The same dataset was used to calculate base cation losses following stem-only and whole-tree harvesting. The calculations showed that the increase in temperature until 2050 would result in an increase in the base cation weathering rate of 20–33 %, and that whole-tree harvesting would lead to an increase in base cation losses of 66 % on average, compared to stem-only harvesting. A sensitivity analysis showed that moisture changes are important for future weathering rates, but the effect of the temperature change was dominating even when the most extreme moisture changes were applied. It was concluded that an increase in weathering rates resulting from higher temperatures would not compensate for the increase in base cation losses following whole-tree harvesting, except in the northernmost part of Sweden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aherne J, Posch M, Forsius M, Lehtonen A, Härkönen K (2012) Impacts of forest biomass removal on soil nutrient status under climate change: a catchment-based modelling study for Finland. Biogeochemistry 107:471–488. doi:10.1007/s10533-010-9569-4

    Article  Google Scholar 

  • Akselsson C, Westling O (2005) Regionalized nitrogen budgets in forest soils for different deposition and forestry scenarios in Sweden. Global Ecol Biogeogr 14:85–95. doi:10.1111/j.1466-822X.2004.00137.x

    Article  Google Scholar 

  • Akselsson C, Holmqvist J, Alveteg M, Kurz D, Sverdrup H (2004) Scaling and mapping regional calculations of soil chemical weathering rates in Sweden. Water Air Soil Poll: Focus 4:671–681. doi:10.1023/B:WAFO.0000028386.89557.fa

    Article  Google Scholar 

  • Akselsson C, Westling O, Sverdrup H, Holmqvist J, Thelin G, Uggla E, Malm G (2007) Impact of harvest intensity on long-term base cation budgets in Swedish forest soils. Water Air Soil Poll: Focus 7:201–210. doi:10.1007/s11267-006-9106-6

    Article  Google Scholar 

  • Akselsson C, Westling O, Alveteg M, Thelin G, Fransson A-M, Hellsten S (2008) The influence of N load and harvest intensity on the risk of P limitation in Swedish forest soils. Sci Total Environ 404:284–289. doi:10.1016/j.scitotenv.2007.11.017

    Article  Google Scholar 

  • Akselsson C, Hultberg H, Karlsson PE, Pihl Karlsson G, Hellsten S (2013) Acidification trends in south Swedish forest soils 1986–2008: slow recovery and high sensitivity to sea-salt episodes. Sci Total Environ 444:271–287. doi:10.1016/j.scitotenv.2012.11.106

    Article  Google Scholar 

  • Belyazid S, Westling O, Sverdrup H (2006) Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Environ Pollut 144:596–609. doi:10.1016/j.envpol.2006.01.018

    Article  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Bergh J, Nilsson U, Kjartansson B, Karlsson M (2010) Impact of climate change on the productivity of silver birch, Norway spruce and Scots pine stands in Sweden and economic implications for timber production. Ecol Bull 53:185–195

    Google Scholar 

  • Brady NC, Weil RR (1999) The nature and properties of soils, 12th edn. Prentice Hall Inc, Upper Saddle River

    Google Scholar 

  • Brandt M, Ejhed H, Rapp L (2008) Näringsbelastning på Östersjön och Västerhavet 2006: Underlag till Sveriges PLC5-redovisning till HELCOM. Swedish Environmental Protection Agency Report 5815, Stockholm (In Swedish with English summary)

  • Brandtberg PO, Olsson B (2012) Changes in the effects of whole-tree harvesting on soil chemistry during 10 years of stand development. Forest Ecol Manag 277:150–162. doi:10.1016/j.foreco.2012.04.019

    Article  Google Scholar 

  • Brantley S (2008) Kinetics of mineral dissolution. In: Brantley S, Kubicki J, White A (eds) Kinetics of water-rock interaction. Springer, New York, pp 151–210

    Chapter  Google Scholar 

  • Campbell J, Rustad L, Boyer E, Christopher S, Driscoll C, Fernandez I, Groffman P, Houle D, Kiekbusch J, Magill A, Mitchell M, Ollinger S (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–284. doi:10.1139/X08-104

    Article  Google Scholar 

  • Cosby BJ, Hornberger GM, Galloway JN, Wright RF (1985) Modeling the effects of acid deposition: assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resour Res 21:51–63. doi:10.1029/WR021i001p00051

    Article  Google Scholar 

  • Cosby BJ, Ferrier RC, Jenkins A, Wright RF (2001) Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol Earth Syst Sci 5:499–517. doi:10.5194/hess-5-499-2001

    Article  Google Scholar 

  • Egnell G, Nohrstedt HÖ, Weslien J, Westling O, Örlander G (1998) Miljökonsekvensbeskrivning av skogsbränsleuttag, asktillförsel och övrig näringskompensation. National Forest Agency Report 1:1998, Jönköping (In Swedish)

  • Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) Should we apply bias correction to global and regional climate model data? Hydrol Earth Syst Sci 16:3391–3404. doi:10.5194/hess-16-3391-2012

    Article  Google Scholar 

  • Evans CD, Cullen JM, Alewell C, Kopácek J, Marchetto A, Moldan F, Prechtel A, Rogora M, Veselý J, Wright R (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5(3):283–297. doi:10.5194/hess-5-283-2001

    Article  Google Scholar 

  • Fölster J, Wilander A (2002) Recovery from acidification in Swedish forest streams. Environ Pollut 117:379–389. doi:10.1016/S0269-7491(01)00201-9

    Article  Google Scholar 

  • Futter MN, Klaminder J, Lucas RW, Laudon H, Köghler SJ (2012) Uncertainty in silicate mineral weathering rate estimates: source partitioning and policy implications. Environ Res Lett 7:1–8. doi:10.1088/1748-9326/7/2/024025

    Article  Google Scholar 

  • Gbondo-Tugbawa SS, Driscoll CT, Aber JD, Likens GE (2001) Validation of a new integrated biogeochemical model (PnET-BGC) at a northern hardwood forest ecosystem. Water Resour Res 37:1057–1070. doi:10.1029/2000WR900375

    Article  Google Scholar 

  • Graf Pannatier E, Thimonier A, Schmitt M, Walthert L, Waldner P (2011) A decade of monitoring at Swiss long-term forest ecosystem research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity? Environ Monit Assess 174:3–30. doi:10.1007/s10661-010-1754-3

    Article  Google Scholar 

  • Hägglund B (1985) A new Swedish National Forest Survey. Swedish University of Agricultural Sciences Report 37, Uppsala (In Swedish with English summary)

  • Hedin L, Granat L, Likens G, Buishand A, Galloway J, Butler T, Rodhe H (1994) Steep declines in atmospheric base cations in regions of Europe and North America. Nature 367:351–354. doi:10.1038/367351a0

    Article  Google Scholar 

  • Hellsten S, Akselsson C, Olsson B, Belyazid S, Zetterberg T (2008) Effekter av skogsbränsleuttag på markförsurning, näringsbalanser och tillväxt: Uppskalning baserat på experimentella data och modellberäkningar som grund för kartläggning av behov av askåterföring. IVL Swedish Environmental Research Institute Report B1798, Stockholm (In Swedish with English summary)

  • Hindar A, Henriksen A, Kaste Ø, Tørseth K (1995) Extreme acidification in small catchments in southwestern Norway associated with a sea salt episode. Water Air Soil Poll 85:547–552. doi:10.1007/BF00476886

    Article  Google Scholar 

  • Hodson ME, Langan SJ, Wilson MJ (1996) A sensitivity analysis of the PROFILE model in relation to the calculation of soil weathering rates. Appl Geochem 11:835–844. doi:10.1016/S0883-2927(96)00048-0

    Article  Google Scholar 

  • Hultberg H, Ferm M (2004) Temporal changes and fluxes of sulphur and calcium in wet and dry deposition, internal circulation as well as in run-off and soil in a forest at Gårdsjön, Sweden. Biogeochemistry 68:355–363

    Article  Google Scholar 

  • Iwald J, Löfgren S, Stendahl J, Karltun E (2013) Acidifying effect of removal of tree stumps and logging residues as compared to atmospheric deposition. For Ecol Manag 290:49–58. doi:10.1016/j.foreco.2012.06.022

    Article  Google Scholar 

  • Johns TC, Gregory JM, Ingram WJ, Johnson CE, Jones A, Lowe JA, Mitchell JFB, Roberts DL, Sexton DMH, Stevenson DS, Tett SFB, Woodage MJ (2003) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim Dynam 20:583–612. doi:10.1007/s00382-002-0296-y

    Google Scholar 

  • Jönsson C, Warfvinge P, Sverdrup H (1995) Uncertainty in predicting weathering rates and environmental stress factors with the profile model. Water Air Soil Poll 81:1–23. doi:10.1007/BF00477253

    Article  Google Scholar 

  • Kellomäki S, Peltola H, Nuutinen T, Korhonen K, Strandman H (2007) Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philos T Roy Soc B 363:2341–2351. doi:10.1098/rstb.2007.2204

    Google Scholar 

  • Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus 63A:24–40. doi:10.1111/j.1600-0870.2010.00475.x

    Article  Google Scholar 

  • Klaminder J, Lucas RW, Futter MN, Bishop KH, Köhler SJ, Egnell G, Laudon H (2011) Silicate mineral weathering rate estimates: are they precise enough to be useful when predicting the recovery of nutrient pools after harvesting? Forest Ecol Manag 261:1–9. doi:10.1016/j.foreco.2010.09.040

    Article  Google Scholar 

  • Koseva I, Watmough S, Aherne J (2010) Estimating base cation weathering rates in Canadian forest soils using a simple texture-based model. Biogeochemistry 101:183–196. doi:10.1007/s10533-010-9506-6

    Article  Google Scholar 

  • Langner J, Persson C, Robertson L, Ullerstig A (1996) Air pollution assessment study using the MATCH Modelling System. Application to sulphur and nitrogen compounds over Sweden 1994. Swedish Meteorological and Hydrological Institute, Report no. 69, Norrköping

  • Laudon H (2008) Recovery from episodic acidification delayed by drought and high sea salt deposition. Hydrol Earth Syst Sci 12:363–370. doi:10.5194/hess-12-363-2008

    Article  Google Scholar 

  • Lind P, Kjellström E (2008) Temperature and precipitation changes in Sweden; a wide range of model-based projections for the 21st century, Swedish Meteorological and Hydrological Institute Reports Meteorology Climatology No. 113, Norrköping

  • Lindgren F, Rue H, Lindström J (2011) An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J Roy Stat Soc B 73:423–498. doi:10.1111/j.1467-9868.2011.00777.x

    Article  Google Scholar 

  • Marklund L-G (1988) Biomass functions for pine, spruce, and birch in Sweden. Department of Forest Taxation, Swedish University of Agricultural Sciences (SLU) Report 45, Uppsala (In Swedish with English summary)

  • Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A (2000) Special Report on Emissions Scenarios, Working Group III, Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Netherer S, Schopf A (2010) Potential effects of climate change on insect herbivores in European forests: General aspects and the pine processionary moth as specific example. For Ecol Manag 259:831–838. doi:10.1016/j.foreco.2009.07.034

    Article  Google Scholar 

  • Nyiri A, Gauss M, Klein H (2009) Transboundary air pollution by main pollutants (S, N, O3) and PM. MSC-W Data Note 1:2009

    Google Scholar 

  • Pihl Karlsson G, Akselsson C, Hellsten S, Karlsson PE (2011) Reduced European emissions of S and N: effects on air concentrations, deposition and soil water chemistry in Swedish forests. Environ Pollut 159:3571–3582. doi:10.1016/j.envpol.2011.08.007

    Article  Google Scholar 

  • Posch M, Reinds GJ (2009) A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environ Model Softw 24:329–340. doi:10.1016/j.envsoft.2008.09.007

    Article  Google Scholar 

  • Reinds GJ, Posch M, Leemans R (2009) Modelling recovery from soil acidification in European forests under climate change. Sci Tot Environ 407:5663–5673. doi:10.1016/j.scitotenv.2009.07.013

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: Model description. Technical Report, Max Planck Institute for Meteorology, MPI-Report 349

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models using integrated nested laplace approximations. J Roy Stat Soc B 71:319–392

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63:4–23. doi:10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  • Skjelkvåle B, Mannio J, Wilander A, Andersen T (2001) Recovery from acidification of lakes in Finland, Norway and Sweden 1990–1999. Hydrol Earth Syst Sci 5(3):327–337. doi:10.5194/hess-5-327-2001

    Article  Google Scholar 

  • Skjelkvåle B, Borg H, Hindar A, Wilander A (2007) Large scale patterns of chemical recovery in lakes in Norway and Sweden: importance of seasalt episodes and changes in dissolved organic carbon. Appl Geochem 22:1174–1180. doi:10.1016/j.apgeochem.2007.03.040

    Article  Google Scholar 

  • STFI (2003) Ecocyclic pulp mill—‘KAM’: final report 1996–2002. Swedish Pulp and Paper Research Institute (STFI), KAM Report A100, Stockholm

  • Strömqvist J, Arheimer B, Dahné J, Donnelly C, Lindstrom G (2012) Water and nutrient predictions in ungauged basins: set-up and evaluation of a model at the national scale. Hydrol Sci J 57(2):229–247. doi:10.1080/02626667.2011.637497

    Article  Google Scholar 

  • Sverdrup H (1990) The kinetics of base cation release due to chemical weathering. Lund University Press, Lund

    Google Scholar 

  • Sverdrup H, Warfvinge P (1993) Calculating field weathering rates using a mechanistic geochemical model (PROFILE). Appl Geochem 8:273–283. doi:10.1016/0883-2927(93)90042-F

    Article  Google Scholar 

  • Sverdrup H, Warfvinge P, Wickman T (1998) Estimating the weathering rate at Gårdsjön using different methods. In: Hultberg H, Skeffington R (eds) Experimental reversal of acid rain effects. The Gårdsjön project. Wiley, London, pp 231–249

    Google Scholar 

  • Sverdrup H, Martinson L, Alveteg M, Moldan F, Kronnäs V, Munthe J (2005) Modeling recovery of Swedish Ecosystems from Acidification. Ambio 34(1):25–31

    Article  Google Scholar 

  • Swedish Forest Agency (2008) Skogliga konsekvensanalyser 2008: SKA-VB 08. Swedish Forest Agency Report 25, Jönköping (In Swedish)

  • Swedish Forest Agency (2014) Swedish statistical yearbook of forestry 2014. Swedish Forest Agency, Jönköping (In Swedish with some features in English)

    Google Scholar 

  • van Breemen N, Jenkins A, Wright RF, Beerling DJ, Arp WJ, Berendse F, Beier C, Collins R, van Dam D, Rasmussen L, Verburg PSJ, Wills MA (1998) Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX Project). Ecosystems 1:345–351

    Article  Google Scholar 

  • Wallman P, Svensson M, Sverdrup H, Belyazid S (2005) ForSAFE: an integrated process-oriented forest model for long-term sustainability assessments. For Ecol Manag 207:19–36. doi:10.1016/j.foreco.2004.10.016

    Article  Google Scholar 

  • Warfvinge P, Sverdrup S (1995) Critical load of acidity to Swedish forest soils. Methods, data and results. Lund University, Department of Chemical Engineering II Report 5

  • Wright R, Jenkins A (2001) Climate change as a confounding factor in reversibility of acidification: RAIN and CLIMEX projects. Hydrol Earth Syst Sci 5(3):477–486. doi:10.5194/hess-5-477-2001

    Article  Google Scholar 

  • Yang W, Andréasson J, Graham LP, Olsson J, Rosberg J, Wetterhall F (2010) Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impact studies. Hydrol Res 41:211–229. doi:10.2166/nh.2010.004

    Article  Google Scholar 

  • Zak SK, Beven K, Reynolds B (1997) Uncertainty in the estimation of critical loads: a practical methodology. Water Air Soil Poll 98:297–316

    Google Scholar 

  • Zetterberg T, Olsson BA, Löfgren S, von Brömssen C, Brandtberg PO (2013) The effect of harvest intensity on long-term calcium dynamics in soil and soil solution at three coniferous sites in Sweden. For Ecol Manag 302:280–294. doi:10.1016/j.foreco.2013.03.030

    Article  Google Scholar 

  • Zheng D, Hunt ER, Running SW (1993) A daily soil temperature model based on air temperature and precipitation for continental applications. Clim Res 2:183–191

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from The Swedish Environmental Protection Agency, through the project CLEO (Climate Change and Environmental Objectives), and the Swedish Research Council, Formas, through the projects Hydroimpacts 2.0 and QWARTS (Quantifying Weathering Rates for Sustainable Forestry). Forest and soil input data were obtained from the Swedish National Forest Inventory database, managed by the Department of Forest Resource Management at the Swedish University of Agricultural Sciences (SLU), and from the Soil Geochemistry database, managed by the Geological Survey of Sweden (SGU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Akselsson.

Additional information

Responsible Editor: Stephen D. Sebestyen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akselsson, C., Olsson, J., Belyazid, S. et al. Can increased weathering rates due to future warming compensate for base cation losses following whole-tree harvesting in spruce forests?. Biogeochemistry 128, 89–105 (2016). https://doi.org/10.1007/s10533-016-0196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0196-6

Keywords

Navigation