Skip to main content

Advertisement

Log in

Groundwater-induced redox-gradients control soil properties and phosphorus availability across four headwater wetlands, New York, USA

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Hydrochemical patterns across groundwater-fed wetlands, especially carbonate and redox gradients, can influence phosphorus (P) availability by controlling its distribution among different soil pools. We explored these linkages by comparing shallow (5–20 cm) soil properties along groundwater flowpaths in two rich fens, a marl fen, and a poor fen. Organic matter content, bulk density, and total elemental content varied more with depth to underlying drift materials than with water table fluctuation, but also were influenced by groundwater discharge, which stabilized water table elevations and controlled redox conditions. Total sulfur and calcium content increased where pore-water chemistry indicated active iron and sulfate reduction. Calcium mineral dynamics, however, did not appear to influence P availability: first, calcium carbonate (CaCO3) accounted for <2% of the soil composition, except in the marl fen where it accounted for 20–25% of the soil composition. Second, Ca-bound P pools, determined from hydrochloric extraction of wet soil samples, accounted for <25% of the inorganic soil P pool. In contrast, iron-bound P determined from bicarbonate-buffered dithionite solution, accounted for 50–80% of the inorganic soil P, and increased where there was evidence of groundwater mixing, as did P release rates inferred from incubated anion resin bags. The total carbon and phosphorus content of organic-rich soils as well as available and labile P pools were strongly correlated with pore-water iron and alkalinity concentrations. Groundwater discharge and resulting hydrochemical gradients explained significant variation in soil composition and P availability across each site. Results highlight the importance of conducting biogeochemical studies in the context of a site’s shallow geologic setting and suggest mechanisms supporting the diverse plant species unique to groundwater wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almendinger JE, Leete JH (1998a) Peat characteristics and groundwater geochemistry of calcareous fens in the Minnesota River Basin, USA. Biogeochemistry 43:17–41. doi:10.1023/A:1005905431071

    Article  Google Scholar 

  • Almendinger JE, Leete JH (1998b) Regional and local hydrogeology of calcareous fens in the Minnesota River Basin, USA. Wetlands 18:184–202

    Google Scholar 

  • American Water Works Association (AWWA) (1998) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC

  • Amon JP, Thompson CA, Carpenter QJ, Miner J (2002) Temperate zone fens of the glaciated midwestern USA. Wetlands 22:301–317. doi:10.1672/0277-5212(2002)022[0301:TZFOTG]2.0.CO;2

    Article  Google Scholar 

  • Axt JR, Walbridge MR (1999) Phosphate removal capacity of palustrine forested wetlands and adjacent uplands in Virginia. Soil Sci Soc Am J 63:1019–1031

    Google Scholar 

  • Bailey K (2006) Effects of ground-water flow on soil chemistry, nutrient availability and plant species distributions in four New York State fens. Ph.D. Dissertation. Cornell University, Ithaca

  • Bailey KM, Bedford BL (2003) Transient geomorphic control of water table and hydraulic head reversals in a coastal freshwater peatland. Wetlands 23:969–978. doi:10.1672/0277-5212(2003)023[0969:TGCOWT]2.0.CO;2

    Article  Google Scholar 

  • Bedford BL (1999) Cumulative effects on wetland landscapes: links to wetland restoration in the United States and Southern Canada. Wetlands 19:775–788

    Google Scholar 

  • Bedford BL, Godwin KS (2003) Fens of the United States: distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23:608–629. doi:10.1672/0277-5212(2003)023[0608:FOTUSD]2.0.CO;2

    Article  Google Scholar 

  • Bedford BL, Walbridge MR, Aldous A (1999) Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169

    Google Scholar 

  • Bisutti I, Hilke I, Raessler M (2004) Determination of total organic carbon—an overview of current methods. Trends Analyt Chem 23:716–726. doi:10.1016/j.trac.2004.09.003

    Article  Google Scholar 

  • Boeye D, Clement L, Verheyen RF (1994) Hydrochemical variation in a ground-water discharge fen. Wetlands 14:122–133

    Google Scholar 

  • Boomer KB, Bedford BL (2008) Influence of nested groundwater systems on reduction–oxidation and alkalinity gradients with implications for plant nutrient availability in four New York fens. J Hydrol (Amsterdam) 351:107–125. doi:10.1016/j.jhydrol.2007.12.003

    Article  Google Scholar 

  • Boyer MLH, Wheeler BD (1989) Vegetation patterns in spring-fed calcareous fens: calcite precipitation and constraints on fertility. J Ecol 77:597–609. doi:10.2307/2260772

    Article  Google Scholar 

  • Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in fresh-water wetlands. Annu Rev Ecol Syst 12:123–161. doi:10.1146/annurev.es.12.110181.001011

    Article  Google Scholar 

  • Brouwer E, Soontiens J, Bobbink R, Roelofs JGM (1999) Sulphate and bicarbonate as key factors in sediment degradation and restoration of Lake Banen. Aquat Conserv: Mar Freshwat Ecosyst 9:121–132. doi:10.1002/(SICI)1099-0755(199901/02)9:1<121::AID-AQC322>3.0.CO;2-W

    Article  Google Scholar 

  • Bubier JL (1995) The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J Ecol 83:403–420. doi:10.2307/2261594

    Article  Google Scholar 

  • Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems. Nature 341:316–318. doi:10.1038/341316a0

    Article  Google Scholar 

  • Carlyle GC, Hill AR (2001) Groundwater phosphate dynamics in a river riparian zone: effects of hydrologic flowpaths, lithology and redox chemistry. J Hydrol (Amsterdam) 247:151–168. doi:10.1016/S0022-1694(01)00375-4

    Article  Google Scholar 

  • Carter MR (1993) Soil sampling and methods of analysis. Lewis, Boca Raton

    Google Scholar 

  • Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G, Albrechtsen H-J (2000) Characterization of redox conditions in groundwater contaminant plumes. J Contam Hydrol 45:165–241. doi:10.1016/S0169-7722(00)00109-1

    Article  Google Scholar 

  • Corstanje R, Reddy KR (2004) Response of biogeochemical indicators to a drawdown and subsequent reflood. J Environ Qual 33:2357–2366

    Article  Google Scholar 

  • Curtis PJ (1989) Effects of hydrogen-ion and sulfate on the phosphorus cycle of a Precambrian shield lake. Nature 337:156–158. doi:10.1038/337156a0

    Article  Google Scholar 

  • D’Angelo EM, Reddy KR (1999) Regulators of heterotrophic microbial potentials in wetland soils. Soil Biol Biochem 31:815–830. doi:10.1016/S0038-0717(98)00181-3

    Article  Google Scholar 

  • Darke AK, Walbridge MR (2000) Al and Fe biogeochemistry in a floodplain forest: implications for P retention. Biogeochemistry 51:1–32. doi:10.1023/A:1006302600347

    Article  Google Scholar 

  • DePinto JV, Scheffe RD, Booty WG, Young TC (1989) Predicting reacidification of calcite treated acid lakes. Can J Fish Aquat Sci 50:2222–2234. doi:10.1139/f89-043

    Google Scholar 

  • Devito K, Dillon PJ (1993) The influence of hydrologic conditions and peat oxia on the phosphorus and nitrogen dynamics of a conifer swamp. Water Resour Res 29:2675–2685. doi:10.1029/93WR00622

    Article  Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Drexler JZ, Bedford BL (2002) Pathways of nutrient loading and impacts on plant diversity in a New York peatland. Wetlands 22:263–281. doi:10.1672/0277-5212(2002)022[0263:PONLAI]2.0.CO;2

    Article  Google Scholar 

  • Drexler JZ, Bedford BL, DeGaetano A, Siegel DI (1999) Quantification of the water budget and nutrient loading in a small peatland. J Am Water Resour Assoc 35:753–769. doi:10.1111/j.1752-1688.1999.tb04172.x

    Article  Google Scholar 

  • Duval TP, Hill AR (2007) Influence of base flow stream bank seepage on riparian zone nitrogen biogeochemistry. Biogeochemistry 85:185–199. doi:10.1007/s10533-007-9128-9

    Article  Google Scholar 

  • Elliott ET, Heil JW, Kelly EF, Monger HC (1999) Soil structural and other physical properties. Oxford University Press, New York

    Google Scholar 

  • Futyma RP, Miller NG (2001) Postglacial history of a marl fen: vegetational stability at Byron-Bergen Swamp, New York. Can J Bot 79:1425–1438. doi:10.1139/cjb-79-12-1425

    Article  Google Scholar 

  • Gachter R, Muller B (2003) Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol Oceanogr 48:929–933

    Google Scholar 

  • Giesler R, Hogberg M, Hogberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79:119–137

    Google Scholar 

  • Glaser PH, Siegel DI, Romanowicz EA, Shen YP (1997) Regional linkages between raised bogs and the climate, groundwater, and landscape of north-western Minnesota. J Ecol 8:3–16. doi:10.2307/2960623

    Google Scholar 

  • Golterman HL (1988) The calcium- and iron bound phosphate phase diagram. Hydrobiologia 159:149–151. doi:10.1007/BF00014722

    Article  Google Scholar 

  • Gusewell S, Bailey K, Roem WJ, Bedford BL (2005) Nutrient limitation and botanical diversity in wetlands: can fertilisation raise species richness? Oikos 109:71–80. doi:10.1111/j.0030-1299.2005.13587.x

    Article  Google Scholar 

  • Haraguchi A, Hasegawa C, Hirayama A, Kojima H (2003) Decomposition activity of peat soils in geogenous mires in Sasakami, central Japan. Eur J Soil Biol 39:191–196. doi:10.1016/j.ejsobi.2003.05.001

    Article  Google Scholar 

  • Hawke D, Carpenter PD, Hunter KA (1989) Competitive adsorption of phosphate on goethite in marine electrolytes. Environ Sci Technol 23:187–191. doi:10.1021/es00179a008

    Article  Google Scholar 

  • Hill AR, Devito KJ, Campagnolo S, Sanmugadas K (2000) Subsurface denitrification in a forest riparian zone: interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51:193–223. doi:10.1023/A:1006476514038

    Article  Google Scholar 

  • Hoch AR, Reddy MM, Aiken GR (2000) Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochim Cosmochim Acta 64:61–72. doi:10.1016/s0016-7037(99)00179-9

    Article  Google Scholar 

  • House WA (2003) Geochemical cycling of phosphorus in rivers. Appl Geochem 18:739–748. doi:10.1016/S0883-2927(02)00158-0

    Article  Google Scholar 

  • Johnson AM, Leopold DJ (1994) Vascular plant species richness and rarity across a minerotrophic gradient in wetlands of St. Lawrence County, New York, USA. Biodivers Conserv 3:606–627. doi:10.1007/BF00114204

    Article  Google Scholar 

  • Kellogg LE, Bridgham SD (2003) Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient. Biogeochemistry 63:299–315. doi:10.1023/A:1023387019765

    Article  Google Scholar 

  • Khoshmanesh A, Hart BT, Duncan A, Beckett R (1999) Biotic uptake and release of phosphorus by a wetland sediment. Environ Technol 20:85–91. doi:10.1080/09593332008616796

    Article  Google Scholar 

  • Komor SC (1994) Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA. Geochim Cosmochim Acta 58:3353–3367. doi:10.1016/0016-7037(94)90091-4

    Article  Google Scholar 

  • Lajtha K (1988) The use of ion-exchange resin bags for measuring nutrient availability in an arid ecosystem. Plant Soil 105:105–111. doi:10.1007/BF02371147

    Article  Google Scholar 

  • Lamers LPM, Tomassen HBM, Roelofs JGM (1998a) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205. doi:10.1021/es970362f

    Article  Google Scholar 

  • Lamers LPM, van Roozendaal SME, Roelofs JGM (1998b) Acidification of freshwater wetlands: combined effects of non-airborne sulfur pollution and desiccation. Water Air Soil Pollut 105:95–106. doi:10.1023/A:1005083526455

    Article  Google Scholar 

  • Lamers LPM, Dolle GET, Berg STGVd, Delft SPJV, Roelofs JGM (2001) Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry 55:87–102. doi:10.1023/A:1010629319168

    Article  Google Scholar 

  • Lamers LPM, Falla SJ, Samborska EM, van Dulken LAR, van Hengstum G, Roelofs JGM (2002) Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands. Limnol Oceanogr 47:585–593

    Google Scholar 

  • Li YL, Vali H, Yang J, Phelps TJ, Zhang CL (2006) Reduction of iron oxides enhanced by a sulfate-reducing bacterium and biogenic H2S. Geomicrobiol J 23:103–117. doi:10.1080/01490450500533965

    Article  Google Scholar 

  • Loeppert RH, Suarez DL (1996) Carbonate and gypsum. In: Bartels JM (ed) Methods of soil analysis: part 3 chemical methods. ASA and SSSA, Madison, pp 437–474

    Google Scholar 

  • Lucassen ECHET, Smolders AJP, Roelofs JGM (2000) Increased groundwater levels cause iron toxicity in Glyceria fluitans (L.). Aquat Bot 66:321–327. doi:10.1016/S0304-3770(99)00083-2

    Article  Google Scholar 

  • Lucassen ECHET, Smolders AJP, van de Crommenacker J, Roelofs JGM (2004a) Effects of stagnating sulphate-rich groundwater on the mobility of phosphate in freshwater wetlands: a field experiment. Arch Hydrobiol 160:117–131. doi:10.1127/0003-9136/2004/0160-0117

    Article  Google Scholar 

  • Lucassen ECHET, Smolders AJP, van de Salm AL, Roelofs JGM (2004b) High groundwater nitrate concentrations inhibit eutrophication of sulphate-rich freshwater wetlands. Biogeochemistry 67:249–267. doi:10.1023/B:BIOG.0000015342.40992.cb

    Article  Google Scholar 

  • Lucassen ECHET, Smolders AJP, Roelofs JGM (2005) Effects of temporary desiccation on the mobility of phosphorus and metals in sulphur-rich fens: differential responses of sediments and consequences for water table management. Wetlands Ecol Manage 13:135–148. doi:10.1007/s11273-004-0314-4

    Article  Google Scholar 

  • Lucassen ECHET, Smolders AJP, Boedeltje G, van den Munckhof PJJ, Roelofs JGM (2006) Groundwater input affecting plant distribution by controlling ammonium and iron availability. J Veg Sci 17:425–434. doi:10.1658/1100-9233(2006)17[425:GIAPDB]2.0.CO;2

    Article  Google Scholar 

  • McNamara JP, Siegel DI, Glaser PH, Beck RM (1992) Hydrogeologic controls on peatland development in the Malloryville wetland, New York (USA). J Hydrol (Amsterdam) 140:279–296. doi:10.1016/0022-1694(92)90244-P

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands. Van Nostrand Reinhold, New York

    Google Scholar 

  • Moore PA, Reddy KR (1994) Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. J Environ Qual 23:955–964

    Google Scholar 

  • Moore TR, Bubier JL, Bledzki L (2007) Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–963. doi:10.1007/s10021-007-9064-5 NY, Print

    Article  Google Scholar 

  • Murphy J, Riley J (1962) A modified single solution for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  Google Scholar 

  • Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z et al (1989) Unexpected changes in the oxic anoxic interface in the Black Sea. Nature 338:411–413. doi:10.1038/338411a0

    Article  Google Scholar 

  • Olivero AM (2001) Classification and mapping of New York’s calcareous fen communities. New York Natural Heritage Program. Albany, NY

    Google Scholar 

  • Paludan C, Jensen HS (1995) Sequential extraction of phosphorus in freshwater wetland and lake sediments: significance of humic acids. Wetlands 15:365–373

    Article  Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146. doi:10.1080/10643389991259182

    Article  Google Scholar 

  • Reschke CA (1990) Ecological communities of New York State. New York Natural Heritage Program, New York State Department of Environmental Conservation, Latham

  • Richardson CJ (1985) Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228:1424–1427. doi:10.1126/science.228.4706.1424

    Article  Google Scholar 

  • Richardson CJ, Marshall PE (1986) Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecol Monogr 56:279–302. doi:10.2307/1942548

    Article  Google Scholar 

  • Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron–sulfide formation. Arch Hydrobiol 139:347–378

    Google Scholar 

  • Roelofs JGM (1991) Inlet of alkaline river water into peaty lowlands: effects on water quality and Stratiotes aloides L. stands. Aquat Bot 39:267–293. doi:10.1016/0304-3770(91)90004-O

    Article  Google Scholar 

  • Sharpley AN (1995) Soil phosphorus dynamics: agronomic and environmental impacts. Ecol Eng 5:261–279. doi:10.1016/0925-8574(95)00027-5

    Article  Google Scholar 

  • Smolders AJP, Roelofs JGM (1993) Sulfate-mediated iron limitation and eutrophication in aquatic ecosystems. Aquat Bot 46:247–253. doi:10.1016/0304-3770(93)90005-H

    Article  Google Scholar 

  • Smolders AJP, Roelofs JGM, Den Haratog C (1995) Internal eutrophication of aquatic ecosystems: mechanisms and possible remedies. Acta Bot Gallica 142:707–717

    Google Scholar 

  • Smolders AJP, Lamers LPM, den Hartog C, Roelofs JGM (2003) Mechanisms involved in the decline of Stratiotes aloides L. in The Netherlands: sulphate as a key variable. Hydrobiologia 506:603–610. doi:10.1023/B:HYDR.0000008551.56661.8e

    Article  Google Scholar 

  • Smolders AJP, Lamers LPM, Lucassen ECHET, Van der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it—a review. Chem Ecol 22:93–111. doi:10.1080/02757540600579730

    Article  Google Scholar 

  • Todorova SG, Siegel DI, Costello AM (2005) Microbial Fe(III) reduction in a minerotrophic wetland—geochemical controls and involvement in organic matter decomposition. Appl Geochem 20:1120–1130. doi:10.1016/j.apgeochem.2005.02.005

    Article  Google Scholar 

  • U.S. Department of Agriculture NRCS (1998) Soil survey geographic (SSURGO) database for Cortland, Onondaga, Oswego, and Tompkins counties, New York

  • U.S. Environmental Protection Agency (1996). Standard methods SW-846:3052. Microwave assisted acid digestion of siliceous and organically based matrices. Washington, DC

  • U.S. Environmental Protection Agency (1998). Standard methods SW-846:3020A. Acid digestion of aqueous samples and extracts for total metal analysis by GFAA spectroscopy. Washington, DC

  • Van Duren IC, Pegtel DM (2000) Nutrient limitations in wet, drained and rewetted fen meadows: evaluation of methods and results. Plant Soil 220:35–47. doi:10.1023/A:1004735618905

    Article  Google Scholar 

  • Verhoeven JTA, Keuter A, Logtestijn RV, Kerkhoven MBV, Wassen M (1996) Control of local nutrient dynamics in mires by regional and climatic factors: a comparison of Dutch and Polish sites. J Ecol 84:647–656. doi:10.2307/2261328

    Article  Google Scholar 

  • Vidon P, Hill AR (2004) Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry 71:259–283. doi:10.1007/s10533-004-9684-1

    Article  Google Scholar 

  • Vitt DH (1994) An overview of factors that influence the development of Canadian peatlands. Mem Entomol Soc Can 169:7–20

    Google Scholar 

  • Williams CJ, Boyer JN, Jochem FJ (2008) Indirect hurricane effects on resource availability and microbial communities in a subtropical wetland–estuary transition zone. Estuaries Coasts 31:204–214. doi:10.1007/s12237-007-9007-6

    Article  Google Scholar 

  • Wilson KA, Fitter AH (1984) The role of phosphorus in vegetational differentiation in a small valley mire. J Ecol 72:463–473. doi:10.2307/2260059

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by The Nature Conservancy, the Andrew W. Mellon Foundation, the Garden Club of America, and the National Science Foundation’s IGERT program awarded through the Biogeochemistry and Environmental Biocomplexity program at Cornell University. Additional support was provided by the Smithsonian Environmental Research Center. This work was made possible by an outstanding undergraduate research team and improved by comments from Kathy Crowley, Sam Simkin, Eran Hood, and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Bailey Boomer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boomer, K.M.B., Bedford, B.L. Groundwater-induced redox-gradients control soil properties and phosphorus availability across four headwater wetlands, New York, USA. Biogeochemistry 90, 259–274 (2008). https://doi.org/10.1007/s10533-008-9251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9251-2

Keywords

Navigation