Skip to main content
Log in

Isolation of cadmium-resistant microbial strains and their immobilisation of cadmium in soil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Six cadmium (Cd)-resistant microbial strains were isolated and their ability to immobilise Cd2+ in soil investigated. Cd-1, Cd-2, Cd-5, and Cd-6 were identified as Stenotrophomonas sp., Cd-3 as Achromobacter sp., and Cd-7 as Staphylococcus sp. The six strains showed a wide adaptation range for salinity and a strong tolerance to Cd2+. The effects of the initial Cd2+ concentration (1–100 mg/L), duration (18–72 h), temperature (10–40 °C), and pH (5.0–9.0) on the efficiency of Cd2+ removal were analysed. The results revealed that the Cd2+ removal rate was higher at an initial Cd2+ concentration of 5–100 mg/L than at 1 mg/L. The maximum Cd2+ removal effect was at a culture duration of 36 h, temperature of 10–35 °C, and pH of 5.0–7.0. X-ray diffraction (XRD) analysis revealed that the Cd2+ was immobilised by Stenotrophomonas sp. Cd-2 and Staphylococcus sp. Cd-7 through bio-precipitation. X-ray photoelectron spectroscopy (XPS) revealed that the Cd2+ was adsorbed by Stenotrophomonas sp. Cd-2, Achromobacter sp. Cd-3, and Staphylococcus sp. Cd-7. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the isolates reacted with the Cd2+ mainly through the O–H, protein N–H, C–N, lipid C–H, fatty acid COO, polysaccharide C–O, P–O, and other functional groups, as well as with lipid molecules on the cell wall surfaces. Scanning electron microscopy (SEM) analysis revealed that there was little difference in the cells after Cd2+ treatment. The results of the soil remediation experiments indicated that the toxicity of Cd in soil could be effectively reduced using certain strains of microbe.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed are included in this paper.

References

Download references

Funding

This work was financially supported by the Ningxia Natural Science Foundation (Excellent Youth Project) (No. 2021AAC05012), the National Natural Science Foundation of China (No. 21966001), and the Collaborative Heavy Metal Detection Project in Soil of Producing Area and Agricultural Products (2021–87).

Author information

Authors and Affiliations

Authors

Contributions

RF: conceptualization, methodology, resources, writing original–draft, writing–review & editing, supervision, project administration. WX: investigation, formal analysis, data curation. HM: validation, data curation. MZ: validation, visualization. KM: resources, writing–review & editing. XY: funding acquisition, writing–review & editing.

Corresponding author

Correspondence to Ruijuan Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, R., Xie, W., Ma, H. et al. Isolation of cadmium-resistant microbial strains and their immobilisation of cadmium in soil. Biodegradation 34, 445–459 (2023). https://doi.org/10.1007/s10532-023-10026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-023-10026-5

Keywords

Navigation