Skip to main content
Log in

Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The effective microbial remediation of the mercury necessitates the mercury to be trapped within the cells without being recycled back to the environment. The study describes a mercury bioaccumulating strain of Enterobacter sp., which remediated mercury from the medium simultaneous to its growth. The transmission electron micrographs and electron dispersive X-ray analysis revealed the accumulation of remediated mercury as nano-size particles in the cytoplasm as well as on the cell wall. The Enterobacter sp. in the present work was able to accumulate mercury, without being engineered in its native form. The possibility of recovering the accumulated mercury from the cells is also indicated. The applicability of the alginate immobilized cells in removing mercury from synthetic and complex industrial effluent in a batch mode was amply demonstrated. The initial load of 7.3 mg l−1 mercury in the industrial effluent was completely removed in 72 h. The cells immobilized in calcium alginate were similarly effective in the complete removal of 5 mg l−1 HgCl2 of mercury from the synthetic effluent in less than 72 h. The immobilized cells could be reused for multiple cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci 5:1807–1817

    CAS  Google Scholar 

  • Bafana A, Krishnamurthi K, Patil M, Chakrabarti T (2010) Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. J Hazard Mater 177:481–486

    Article  PubMed  CAS  Google Scholar 

  • Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–53

    Article  PubMed  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Bayramoğlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43

    Article  Google Scholar 

  • Brodkin E, Copes R, Mattman A, Kennedy J, Kling R, Yassi A (2007) Lead and mercury exposures: interpretation and action. Can Med Assoc J 176:59–63

    Article  Google Scholar 

  • Chen JZ, Tao XC, Xu J, Zhang T, Liu ZL (2005) Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochem 40:3675–3679

    Article  CAS  Google Scholar 

  • Chiarle S, Ratto M, Rovatti M (2000) Mercury removal from water by ion exchange resins adsorption. Water Res 34:2971–2978

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2007) A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 41:8281–8287

    Article  PubMed  CAS  Google Scholar 

  • David GFX, Herbert J, Wright GDS (1973) The ultrastructure of the pineal ganglion in the ferret. J Anat 115:79–97

    PubMed  CAS  Google Scholar 

  • De J, Sarkar A, Ramaiah N (2006) Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology 15:385–389

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Hu ZL, Yi XE (2008) Continuous treatment process of mercury removal from aqueous solution by growing recombinant E. coli cells and modeling study. J Hazard Mater 153:487–492

    Article  PubMed  CAS  Google Scholar 

  • Essa AMM, Julian DJ, Kidd SP, Brown NL, Hobman JL (2003) Mercury resistance determinant related to Tn21, Tn1696, and Tn5053 in Enterobacteria from the preantibiotic era. Antimicrob Agents Chemother 47:1115–1119

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    Article  CAS  Google Scholar 

  • Green-Ruiz C (2006) Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary. Bioresour Technol 97:1907–1911

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Singh R, Khare SK, Gupta MN (2006) A solvent tolerant isolate of Enterobacter aerogenes. Bioresour Technol 97:99–103

    Article  PubMed  CAS  Google Scholar 

  • Hobman JL, Essa AMM, Brown NL (2002) Mercury resistance (mer) operons in enterobacteria. Biometals 30:719–722

    CAS  Google Scholar 

  • Holmes P, James KAF, Levy LS (2009) Is low-level environmental mercury exposure of concern to human health? Sci Total Environ 408:171–182

    Article  PubMed  CAS  Google Scholar 

  • Kamarudin KSN, Mohamad MF (2010) Synthesis of gold (Au) nanoparticles for mercury adsorption. Am J Appl Sci 7:835–839

    Article  CAS  Google Scholar 

  • Kiyono M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci 52:199–204

    Article  CAS  Google Scholar 

  • Li P, Feng XB, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168:591–601

    Article  PubMed  CAS  Google Scholar 

  • Lisha KP, Maliyekkal SM, Pradeep T (2010) Manganese dioxide nanowhiskers: a potential adsorbent for the removal of Hg(II) from water. Chem Eng J 160:432–439

    Article  CAS  Google Scholar 

  • Manohar DM, Krishnan KA, Anirudhan TS (2002) Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res 36:1609–1619

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Oehmen A, Fradinho J, Serra S, Carvalho G, Capelo JL, Velizarov S, Crespo JG, Reis MAM (2009) The effect of carbon source on the biological reduction of ionic mercury. J Hazard Mater 165:1040–1048

    Article  PubMed  CAS  Google Scholar 

  • Okoronkwo NE, Igwe JC, Okoronkwo IJ (2007) Environmental impacts of mercury and its detoxification from aqueous solutions. Afr J Biotechnol 6:335–340

    CAS  Google Scholar 

  • Pepi M, Gaggi C, Bernardini E, Focardi S, Lobianco A, Ruta M, Nicolardi V, Volterrani M, Gasperini S (2011) Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int Biodeterior Biodegradation 65:85–91

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2009) Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: equilibrium, thermodynamic and kinetic studies. J Hazard Mater 171:500–507

    Article  PubMed  CAS  Google Scholar 

  • Streets DG, Zhang Q, Wu Y (2009) Projections of global mercury emissions in 2050. Environ Sci Technol 43:2983–2988

    Article  PubMed  CAS  Google Scholar 

  • Sugio T, Fujii M, Takeuchi F, Negishi A, Maeda T, Kamimura K (2003) Volatilization of mercury by an iron oxidation enzyme system in a highly mercury resistant Acidithiobacillus ferrooxidans strain MON-1. Biosci Biotechnol Biochem 67:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  PubMed  CAS  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    PubMed  CAS  Google Scholar 

  • Wagner-Döbler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol 62:124–133

    Article  PubMed  Google Scholar 

  • Wang J, Deng B, Wang X, Zheng J (2009) Adsorption of aqueous Hg(II) by sulfur-impregnated activated carbon. Environ Eng Sci 26:1693–1699

    Article  CAS  Google Scholar 

  • Yamaguchi A, Tamang DG, Saier MH Jr (2007) Mercury transport in bacteria. Water Air Soil Pollut 182:219–234

    Article  CAS  Google Scholar 

  • Zhang FS, Nriagu JO, Itoh H (2005) Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res 39:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhao XW, Zhou MH, Li QB, Lu YH, He N, Sun DH, Deng X (2005) Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli. Process Biochem 40:1611–1616

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Department of Biotechnology (Govt. of India) is gratefully acknowledged. Authors gratefully acknowledge the guidance and facilities for EDAX provided by Prof. B.R. Mehta, Department of Physics, IIT Delhi. The kind help given by Dr. V. Singh in recording and analyzing TEM micrographs is also gratefully acknowledged. Author A. Sinha also acknowledges the fellowship provided by the University Grants Commission (Govt. of India), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Khare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, A., Khare, S.K. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation 23, 25–34 (2012). https://doi.org/10.1007/s10532-011-9483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9483-z

Keywords

Navigation