Skip to main content
Log in

Hydrogen production and anaerobic decolorization of wastewater containing Reactive Blue 4 by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Anaerobic biodegradability of wastewater (3,000 mg CODcr/l) containing 300 mg/l Reactive Blue 4, with different co-substrates, glucose, butyrate and propionate by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa, concomitantly with hydrogen production was investigated at 35°C. The accumulative hydrogen production at 3,067 mg CODcr/l was obtained after 7 days of incubation with glucose, sludge, the bacterial consortium. The volatile fatty acids, residual glucose and the total organic carbon were correlated to hydrogen obtained. Interestingly, the bacterial consortium possess decolorization ability showing approximately 24% dye removal after 24 h incubation using glucose as a co-substrate, which was about two and eight times those of butyrate (10%), propionate (12%) and control (3%), respectively. RB4 decolorization occurred through acidogenesis, as high volatile fatty acids but low methane was detected. The bacterial consortium will be the bacterial strains of interest for further decolorization and hydrogen production of industrial waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgari. Process Biochem 40:1347–1361. doi:10.1016/j.procbio.2004.06.007

    Article  CAS  Google Scholar 

  • Bothe H, Winkelmann S, Boison G (2008) Maximizing hydrogen production by cyanobacteria. Z Naturforsch 63(C):226–232

    CAS  Google Scholar 

  • Chen CC, Lin CY, Lin MC (2002) Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58(2):224–228. doi:10.1007/s002530100814

    Article  PubMed  Google Scholar 

  • Dos Santos AB, Bisschops IAE, Cervantes FJ, Van Lier JB (2005) The transformation and toxicity of anthraquinone dyes during thermophilic (55°C) and mesophilic (30°C) anaerobic treatments. J Biotechnol 15:345–353. doi:10.1016/j.jbiotec.2004.09.007

    Article  CAS  Google Scholar 

  • Elam CC, Gregoire Padro CE, Sandrock G, Luzzi A, Lindblad P, Hagen EF (2003) Realizing the hydrogen future: the International Energy Agency’s efforts to advance hydrogen energy technologies. Int J Hydrogen Energy 28:601–607. doi:10.1016/S0360-3199(02)00147-7

    Article  CAS  Google Scholar 

  • Fang HHP, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82(2):87–93. doi:10.1016/S0960-8524(01)00110-9

    Article  PubMed  CAS  Google Scholar 

  • Fang HHP, Liu H, Zhang T (2004) Bio-hydrogen production from wastewater. Water Sci Technol Water Supply 4(1):77–85

    CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolorization of dyewastewaters: a review. Bioresour Technol 79:251–262. doi:10.1016/S0960-8524(01)00028-1

    Article  PubMed  CAS  Google Scholar 

  • Hart D (1997) Hydrogen power: the commercial future of “the ultimate fuel”. Financial Times Energy Publishing, London

    Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27(11–12):1339–1347. doi:10.1016/S0360-3199(02)00090-3

    Article  CAS  Google Scholar 

  • Jun YS, Yu SH, Ryu KG, Lee TJ (2008) Kinetic study of pH effects on biological hydrogen production by a mixed culture. J Microbiol Biotechnol 18(6):1130–1135

    PubMed  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582. doi:10.1016/j.enzmictec.2005.09.015

    Article  CAS  Google Scholar 

  • Khanal SK, Chen WH, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29(11):1123–1131

    CAS  Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6):589–593. doi:10.1016/S0032-9592(99)00109-0

    Article  CAS  Google Scholar 

  • Laszlo JA (1995) Electrolyte effects on hydrolyzed reactive dye binding to quaternized cellulose. Textile Chemist Colorist 27(4):25–27

    CAS  Google Scholar 

  • Lay JJ (2000) Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68(3):269–278. doi:10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  • Lee KK, Kassim AM, Lee HK (2004) The effect of nitrogen supplementation on the efficiency of color and COD removal by Malaysian white-rot fungi in textile dyeing effluents. Water Sci Technol 50:73–78

    PubMed  CAS  Google Scholar 

  • Lee YH, Matthews RD, Pavlostathis SG (2005) Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Sci Technol 52(1–2):377–383

    PubMed  CAS  Google Scholar 

  • Liu D, Zeng RJ, Angelidaki I (2008) Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70°C). Biotechnol Bioeng 100(6):1108–1114. doi:10.1002/bit.21834

    Article  PubMed  CAS  Google Scholar 

  • Manu B, Chaudhari S (2002) Anaerobic decolorization of simulated textile wastewater containing azo dyes. Bioresour Technol 82:225–231. doi:10.1016/S0960-8524(01)00190-0

    Article  PubMed  CAS  Google Scholar 

  • McCarty PL, Smith DP (1986) Anaerobic wastewater treatment. Environ Sci Technol 20:1200–1206. doi:10.1021/es00154a002

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127(3):740–748. doi:10.1104/pp.127.3.740

    Article  PubMed  CAS  Google Scholar 

  • Melpei F, Andreoni V, Daffonchio D, Rozzi A (1998) Anaerobic digestion of print pastes: a preliminary screening of inhibition by dyes and biodegradability of thickeners. Bioresour Technol 63:49–56. doi:10.1016/S0960-8524(97)00109-0

    Article  Google Scholar 

  • Mu Y, Zheng WJ, Yu HQ, Zhu RF (2006) Biological hydrogen production by anaerobic sludge at various temperature. Int J Hydrogen Energy 31:780–785. doi:10.1016/j.ijhydene.2005.06.016

    Article  CAS  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84. doi:10.1080/10408419891294181

    Article  PubMed  CAS  Google Scholar 

  • Omar HH (2008) Algal decolorization and degradation of monoazo and diazo dyes. Pak J Biol Sci 11(10):1310–1316

    Article  PubMed  CAS  Google Scholar 

  • Pitwell LR (1983) Standard COD. Chem Br 19:907

    Google Scholar 

  • Revenga J, Rodriguez F, Tijero J (1994) Study of redox behavior of anthraquinone in aqueous medium. J Electrochem Soc 141(2):330–333. doi:10.1149/1.2054725

    Article  CAS  Google Scholar 

  • Rys P, Zollinger H (1989) Reactive dye-fiber systems. The theory of coloration of Textiles. In: Johnson A (ed) Society of dyers and colorists, West Yorkshire, England, pp 552

  • Singh S, Chandra R, Patel DK, Reddy MM, Rai V (2008) Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture. Bioresour Technol 99(13):5703–5709. doi:10.1016/j.biortech.2007.10.022

    Article  PubMed  CAS  Google Scholar 

  • Taguchi F, Chang JD, Mizukami N, Saito-Taki T, Hasegawa K, Morimoto M (1993) Isolation of a hydrogen-producing bacterium, Clostridium beijerinckii strain AM21B. Can J Microbiol 39(7):726–730

    Article  CAS  Google Scholar 

  • Takabatake H, Suzuki K, Ko IB, Noike T (2004) Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria. Bioresour Technol 95:151–158. doi:10.1016/j.biortech.2003.12.019

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 32:200–206. doi:10.1016/j.ijhydene.2006.06.034

    Article  CAS  Google Scholar 

  • Vandevivere PC, Bianchi R, Verstraete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–320. doi:10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-#

    Article  CAS  Google Scholar 

  • Wang X, Hoefel D, Saint CP, Monis PT, Jin B (2007) The isolation and microbial community analysis of hydrogen producing baceria from activated sludge. J Appl Microbiol 103:1415–1423. doi:10.1111/j.1365-2672.2007.03370.x

    Article  PubMed  CAS  Google Scholar 

  • Zheng XJ, Yu HQ (2005) Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manage 74:65–70

    PubMed  CAS  Google Scholar 

  • Zollinger H (1991) Color chemistry, 2nd edn. VHC publishers, New York

    Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS-NRCT (Microbial Resources Program) and Thailand Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramida Yuwadee Watanapokasin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanapokasin, R.Y., Boonyakamol, A., Sukseree, S. et al. Hydrogen production and anaerobic decolorization of wastewater containing Reactive Blue 4 by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa . Biodegradation 20, 411–418 (2009). https://doi.org/10.1007/s10532-008-9232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9232-0

Keywords

Navigation