Skip to main content
Log in

Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A two-stage reactor system was developed for the continuous degradation of gas-phase trichloroethylene (TCE). Methylosinus trichosporium OB3b was immobilized on activated carbon in a TCE degradation reactor, trickling biofilter (TBF). The TBF was coupled with a continuous stirred tank reactor (CSTR) to allow recirculation of microbial cells from/to the TBF for the reactivation of inactivated cells during TCE degradation. The mass transfer aspect of the TBF was analyzed, and mass transfer coefficient of 3.9 h−1 was estimated. The loss of soluble methane monooxygenase (sMMO) activity was modeled based on a material balance on the CSTR and TBF, and transformation capacity (T c) was determined to be 20.2  \(\mu\)mol mg−1. Maximum TCE degradation rate of 525 mg 1−1 d−1 was obtained and reactor has been stably operated for more than 270 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

activity of sMMO (TCE per cell and time, nmol mg−1 min−1)

A :

cross-sectional area of TBF (cm2)

a max :

maximum activity of sMMO (nmol min−1 mg−1)

B :

bleed rate (ml min−1)

C g :

outlet TCE concentration in gas phase of TBF (mol l−1)

C g0 :

inlet TCE concentration in gas phase of TBF (mol l−1)

C l :

TCE concentration in liquid phase of TBF (mol l−1)

C*l :

TCE concentration in interface of liquid phase of TBF (mol l−1)

C s :

TCE concentration in activated carbon support of TBF (mol l−1)

C b :

TCE concentration in biofilm of TBF (mol l−1)

C x :

TCE concentration in liquid phase of TBF (mol l−1)

ΔC g :

C g0C g (mol l−1)

F g :

gas flow rate of TBF (ml min−1)

F l :

liquid flow rate to TBF (ml min−1)

Fl :

F lB (ml min−1)

h :

height of TBF (cm)

H :

Henry’s constant (atm l mg−1)

k l a :

gas/liquid mass-transfer coefficient (h−1)

R :

ideal gas constant (atm l mol−1 K−1)

P g :

partial pressure of gas (atm)

r :

rate of TCE degradation (mg l−1 d−1)

S :

growth substrate concentration in CSTR (mol l−1)

S 0 :

growth substrate concentration of inflow to CSTR (mol l−1)

S′:

growth substrate concentration of outflow from TBF (mol l−1)

ΔS :

S 0S (mol l−1)

t :

time (h)

T :

kelvin temperature (K)

T c :

transformation capacity ( \(\mu\)mol mg−1)

V 1 :

CSTR working volume (l)

X d :

dead cell concentration in CSTR (mg ml−1)

Xd :

dead cell concentration of outflow from TBF (mg ml−1)

X max :

maximum cell concentration (mg ml−1)

X v :

viable cell concentration in CSTR (mg ml−1)

Xv :

viable cell concentration of outflow from TBF (mg ml−1)

X t :

total cell concentration (mg ml−1)

Y :

yield coefficient (cell per substrate, mg mg−1)

Greek symbols::

 

α1 :

Fl/F l (dimensionless)

α2 :

B/F l (dimensionless)

α3 :

V 1/F l (min)

α4 :

F g/F l (dimensionless)

ɛb :

fraction of biofilm (dimensionless)

ɛg :

fraction of gas phase (dimensionless)

ɛs :

fraction of activated carbon support (dimensionless)

ɛx :

fraction of liquid phase (dimensionless)

μ:

specific grow rate in CSTR (h−1)

μmax :

maximum specific grow rate in CSTR (h−1)

φ:

viable cell fraction in CSTR (dimensionless)

References

  • Alvarez-Cohen L, McCarty PL (1991) Two-stage disperse growth treatment of halogenated aliphatic compounds by cometabolism. Environ. Sci. Technol. 25: 1387–1393

    Article  CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L (1995) Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol, Biotechnol. Bioeng. 45: 440–449

    Article  CAS  Google Scholar 

  • Chang HL, Alvarez-Cohen L (1997) Two-stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Wat. Res. 31: 2026–2036

    Article  CAS  Google Scholar 

  • Ensley BD (1991) Biochemical diversity of trichloroethylene metabolism. Annu. Rev. Microbiol. 45: 283–299

    Article  PubMed  CAS  Google Scholar 

  • Fennel DE, Nelson YM, Underhill SE, White TE, Jewell WJ (1993) TCE degradation in a methanotrophic attached-film bioreactor. Biotechnol. Bioeng. 42: 859–872

    Article  Google Scholar 

  • Fitch MW, Weissman D, Phelps P, Georgiou G, Speitel G (1996) Trichloroethylene degradation by Methylosinus trichosporium OB3b mutants in a sequencing biofilm reactor. Wat. Res. 30: 2655–2664

    Article  CAS  Google Scholar 

  • Kang JM, Lee EY, Park S (2001) Cometabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations of methane or methanol. Biotechnol. Lett. 23: 1877–1882

    Article  CAS  Google Scholar 

  • Lee EY (2001) Bioreactor systems for the cometabolic biodegradation of trichloroethylene. Kor. J. Biotechnol. Bioeng. 16: 527–532

    Google Scholar 

  • Lee EY (2003) Continuous treatment of gas-phase trichloroethylene by Burkholderia cepacia G4 in a two-stage continuous stirred tank reactor/trickling biofilter system. J. Biosci. Bioeng. 96: 572–574

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Kang JM, Park S (2003) Evaluation of Transformation Capacity for Degradation of Ethylene Chlorides by Methylosinus trichosporium OB3b. Biotechnol. Biopro. Eng. 8: 309–312

    Article  CAS  Google Scholar 

  • Lee EY, Ye BD, Park S (2003) Development and operation of a trickling biofilter system for continuous treatment of gas-phase trichloroethylene. Biotechnol. Lett. 25: 1757–1761

    Article  CAS  Google Scholar 

  • Livingston AG (1991) Biodegradation of 3,4-dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm kinetic model. Biotechnol. Bioeng. 38: 260–272

    Article  CAS  Google Scholar 

  • Love Jr. OT, Eilers RG (1982) Treatment of drinking water containing trichloroethylene and related industrial solvents. J. Am. Water Works Assoc. 74: 413–425

    CAS  Google Scholar 

  • Oldenhuis R, Oedzes JY, van der Waarde JJ, Janssen DB (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichlorosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7–14

    PubMed  CAS  Google Scholar 

  • Shah NN, Park S, Taylor RT, Droege MW (1992) Cultivation of Methylosinus trichosporium OB3b: III. Production of particulate methane monooxygenase in continuous culture. Biotechnol. Bioeng. 40: 705–712

    Article  CAS  Google Scholar 

  • Sipkema EM, de Koning W, van Hylckama Vlieg JE, Ganzeveld KJ, Janssen DB, Beenackers AA (1999) Trichloroethylene degradation in a two-step system by Methylosinus trichosporium OB3b. Optimization of system performance: use of formate and methane. Biotechnol. Bioeng. 63: 56–68

    Article  PubMed  CAS  Google Scholar 

  • Strandberg GW, Donaldson TL, Farr LL (1989) Degradation of trichloroethylene and trans-1,2 dichloroethylene by a methanotrophic consortium in a fixed-film packed-bed bioreactor. Environ. Sci. Technol. 23: 1422–1425

    Article  CAS  Google Scholar 

  • Sun AK, Wood TK (1997) Trichloroethylene mineralization in a fixed film bioreactor using a pure culture expressing constitutively toluene ortho-monooxygenase. Biotechnol. Bioeng. 55: 674–685

    Article  CAS  Google Scholar 

  • Taylor RT & Hanna ML (1995) Laboratory treatability studies for resting-cell in situ microbial filter bioremediation. In: Bioaugmentation for site remediation. Battelle press, pp. 15

  • Tschantz MF, Bowman JP, Donaldson TL, Strong-Gunderson JM, Palumbo AV, Herbes SE, Sayler GS (1995) Methanotrophic TCE biodegradation in a multi-stage bioreactor. Environ. Sci. Technol. 29: 2073–2082

    Article  CAS  Google Scholar 

  • Tsien HC, Brusseau GA, Hanson RS, Wackett LP (1989) Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55: 3155–3161

    PubMed  CAS  Google Scholar 

  • van Hylckama Vlieg JET, de Koning W, Janssen DB (1997) Effect of chlorinated ethene conversion on viability and activity of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 63: 4961–4964

    Google Scholar 

  • Westrick JJ, Mello JW, Thomas RF (1984) The groundwater supply survey. J. Am. Water Works Assoc. 5: 52–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Yeol Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J.W., Choi, Y.B., Park, S. et al. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Biodegradation 18, 91–101 (2007). https://doi.org/10.1007/s10532-006-9040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-006-9040-3

Keywords

Navigation