Skip to main content

Advertisement

Log in

Revisiting the Darwinian shortfall in biodiversity conservation

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Among the seven shortfalls of biodiversity knowledge, the one that makes direct reference to phylogenetic information is the Darwinian shortfall, which embraces three components: “(1) the lack of fully resolved phylogenies for most groups of organisms; (2) the limited knowledge of branch lengths and difficulties in absolute time calibrations; and (3) unknown evolutionary models linking those phylogenies to ecological traits and the life-history variation” (Diniz-Filho et al. in Trends Ecol Evol 28:689–694, 2013). In order to overcome them, Diniz-Filho et al. (Trends Ecol Evol 28:689–694, 2013) emphasized the need to know the problems relative to phylogeny reconstruction, but they did not provide a clear comprehension of these problems. In the present article, I aim to comment on these problems in the context of the five epistemic stages of phylogenetic analysis. These are: (1) taxon sampling; (2) evidence; (3) homology assessment; (4) optimization methods; and (5) hypotheses formulation. A brief review of these stages is necessary to comprehend how complex is the use of phylogenetic hypotheses in ecology and conservation. I also provide additional and balanced solutions in an attempt to overcome the evolutionary shortfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida AMR, Yockteng R, Specht CD (2015) Evolution of petaloidy in the Zingiberales: an assessment of the relationship between ultrastucture and gene expression patterns. Dev Dyn 244:1121–1132

    Article  Google Scholar 

  • Arthur W (2011) Evolution: a developmental approach. Wiley, Oxford

    Google Scholar 

  • Assis LCS (2009) Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics 25:528–544

    Article  Google Scholar 

  • Assis LCS (2014) Testing evolutionary hypotheses: from Willi Hennig to angiosperm phylogeny group. Cladistics 30:240–242

    Article  Google Scholar 

  • Assis LCS (2015) Homology assessment in parsimony and model-based analyses: two sides of the same coin. Cladistics 31:315–320

    Article  Google Scholar 

  • Assis LCS (2016) Semaphoronts: the elements of biological systematics. In: Williams D, Schmitt M, Wheeler Q (eds) The future of phylogenetic systematics: the legacy of Willi Hennig. Cambridge University Press, Cambridge, pp 213–229

    Chapter  Google Scholar 

  • Assis LCS (2017a) Patterns of character evolution in phylogenies. J Syst Evol 55:225–230

    Article  Google Scholar 

  • Assis LCS (2017b) The jazz of cladistics. Syst Biodivers 15:385–390

    Article  Google Scholar 

  • Assis LCS, Rieppel O (2011) Are monophyly and synapomorphy the same of different? Revisiting the role of morphology in phylogenetics. Cladistics 27:94–102

    Article  Google Scholar 

  • Britz R, Conway KW (2009) Osteology of Paedocypris, a miniature and highly developmentally truncated fish (Teleostei: Ostariophysi: Cyprinidae). J Morph 270:389–412

    Article  PubMed  CAS  Google Scholar 

  • Britz R, Conway KW, Rüber L (2014) Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes). Zool J Linn Soc 172:556–615

    Google Scholar 

  • Brower AVZ (2017) Statistical consistency and phylogenetic inference: a brief review. Cladistics. https://doi.org/10.1111/cla.12216

    Article  Google Scholar 

  • Burbrink FT, Chen X, Myers EA, Brandley MC, Pyron RA (2012) Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation. Proc R Soc B 279:4817–4826

    Article  PubMed  Google Scholar 

  • Buzgo M, Soltis DE, Soltis PS, Ma H (2004) Towards a comprehensive integration of morphological and genetic studies of floral development. Trends Plant Sci 9:164–173

    Article  PubMed  CAS  Google Scholar 

  • Bybee S, Zaspel JM, Beucke KA, Scott CH, Smith BW, Branham MA (2009) Are molecular data supplanting morphological data in modern phylogenetic studies? Syst Entomol 35:2–5

    Article  Google Scholar 

  • Cadotte MW, Davies TJ, Peres-Neto PR (2017) Why phylogenies do not always predict ecological differences? Ecol Monogr 87:535–551

    Article  Google Scholar 

  • Cernansky R (2017) The biodiversity revolution. Nature 546:22–124

    Article  PubMed  CAS  Google Scholar 

  • Cracraft J (2005) Phylogeny and evo-devo: characters, homology, and the historical analysis of the evolution of development. Zoology 108:345–356

    Article  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the Tree of Life. Nat Rev Genet 6:361–375

    Article  PubMed  CAS  Google Scholar 

  • De-Paula OC, Assis LCS, Ronse de Craene LP (2018) Unbuttoning the ancestral flower of angiosperms. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2018.05.006

    Article  PubMed  Google Scholar 

  • DeSalle R, Brower AVZ (1997) Process partitions, congruence and the independence of characters: inferring relationships among closely-related Hawaiian Drosophila from multiple gene regions. Syst Biol 46:751–764

    Article  PubMed  CAS  Google Scholar 

  • Diniz-Filho JAF, Loyola RD, Raia P, Mooers AO, Bini LM (2013) Darwinian shortfalls in biodiversity conservation. Trends Ecol Evol 28:689–694

    Article  PubMed  Google Scholar 

  • Doyle JA, Endress PK (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161:S121–S153

    Article  CAS  Google Scholar 

  • Doyle JA, Endress PK (2011) Tracing the early evolutionary diversification of the angiosperm flower. In: Wanntorp L, Ronse De Craene L (eds) Flowers on the tree of life. Cambridge University Press, Cambridge, pp 88–119

    Chapter  Google Scholar 

  • Doyle JA, Donoghue MJ, Zimmer EA (1994) Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann Missouri Bot Gard 81:419–450

    Article  Google Scholar 

  • Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. In: Soltis DE, Soltis PS, Leebens-Mack J (eds) Advances in botanical research, vol 44. Developmental genetics of the flower. Academic Press, New York, pp 1–46

    Google Scholar 

  • Faith D (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Farris JS (1983) The logical basis of phylogenetic analysis. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York, pp 7–36

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Inc. Publishers, Sunderland

    Google Scholar 

  • Fenker J, Tedeschi LG, Pyron RA, Nogueira CC (2014) Phylogenetic diversity, habitat loss and conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias). Divers Distrib 20:1108–1119

    Article  Google Scholar 

  • Fenwick AM, Gutberlet RL Jr, Evans JA, Parkinson CL (2009) Morphological and molecular evidence for phylogeny and classification of South America pitvipers, genera Bothrops, Bothriopsis and Bothrocophias (Serpentes: Viperidae). Zool J Linn Soc 156:617–640

    Article  Google Scholar 

  • Forest F et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760

    Article  PubMed  CAS  Google Scholar 

  • Franz NM (2014) Anatomy of a cladistic analysis. Cladistics 30:294–321

    Article  Google Scholar 

  • Garland T Jr, Díaz-Uriarte R (1999) Polytomies and phylogenetically independent contrasts: examination of the bounded degrees of freedom approach. Syst Biol 48:547–558

    Article  PubMed  Google Scholar 

  • Garzón-Orduña IJ, Silva-Brandão KL, Willmott KR, Freitas AVL, Brower AVZ (2015) An alternative, plant based time-tree implies conflicting dates for the diversification of Ithomiine butterflies (Lepidoptera: Nymphalidae: Danainae). Syst Biol 64:752–767

    Article  PubMed  CAS  Google Scholar 

  • Gee H (2003) Evolution: ending incongruence. Nature 425:782

    Article  PubMed  CAS  Google Scholar 

  • Goloboff PA, Torres A, Arias TS (2017) Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics. https://doi.org/10.1111/cla.12205

    Article  Google Scholar 

  • Grandcolas P, Deleporte P, Desutter-Grandcolas L, Daugeron C (2001) Phylogenetics and ecology: as many characters as possible should be included in cladistic analysis. Cladistics 17:104–110

    Google Scholar 

  • Graybeal A (1998) Is it better to add taxa or characters to a difficult phylogenetic problem? Syst Biol 47:9–17

    Article  PubMed  CAS  Google Scholar 

  • Gumbs R, Gray CL, Wearn OR, Owen NR (2018) Tetrapods on the EDGE: overcoming data limitations to identify phylogenetic conservation priorities. PLoS ONE 13:e0194680

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn MW, Nakhleh L (2015) Irrational exuberance for resolved species trees. Evolution 70:7–17

    Article  PubMed  Google Scholar 

  • Hall BK (ed) (1994) Homology: the hierarchical basis of comparative biology. Academic Press, San Diego

    Google Scholar 

  • Havstad JC, Assis LCS, Rieppel O (2015) The semaphorontic view of homology. J Exp Zool Part B 324:578–587

    Article  Google Scholar 

  • Heath TA, Hedtke SM, Hillis DM (2008) Taxon sampling and the accuracy of phylogenetic analyses. J Syst Evol 46:239–257

    Google Scholar 

  • Hedges SB, Marin J, Sueski M, Paymer M, Kumar S (2015) Tree of life reveals clock-like speciation and diversification Mol. Biol Evol 32:835–845

    Article  CAS  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hortal J, Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549

    Article  Google Scholar 

  • Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 3:e296

    Article  Google Scholar 

  • Jaramillo MA, Kramer EM (2007) The role of developmental genetics in understanding homology and morphological evolution in plants. Int J Plant Sci 168:61–72

    Article  CAS  Google Scholar 

  • Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jenner RA (2004) Accepting partnership by submission? Morphological phylogenetics in a molecular millennium. Syst Biol 53:333–342

    Article  PubMed  Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Redding DW, Hartmann K, Mooers AO (2014) Global distribution and conservation of evolutionary distinctness in birds. Curr Biol 24:919–930

    Article  PubMed  CAS  Google Scholar 

  • Kelly S, Grenyer R, Scotland RW (2014) Phylogenetic trees do not reliably predict feature diversity. Divers Distrib 20:600–612

    Article  Google Scholar 

  • Kitching IJ, Forey PL, Humphries CJ, Williams DM (1998) Cladistics: the theory and practice of parsimony analysis. Oxford University Press, Oxford

    Google Scholar 

  • Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships amongst Epicrates (Boidae, Serpentes). Syst Zool 38:7–25

    Article  Google Scholar 

  • Kuhn TS, Mooers A, Thomas GH (2011) A simple polytomy resolver for dated phylogenies. Methods Ecol Evol 2:427–436

    Article  Google Scholar 

  • Lamsdell JC, Congreve CR, Hopkins MJ, Krug AZ, Patzkowsky ME (2017) Phylogenetic paleoecology: three-thinking and ecology in deep time. Trends Ecol Evol 32:452–463

    Article  PubMed  Google Scholar 

  • Lecointre G, Deleporte P (2005) Total evidence requires exclusion of phylogenetically misleading data. Zool Script 34:221–223

    Article  Google Scholar 

  • Lukoschek V, Keogh JS, Avise JC (2012) Evaluating fossil calibration for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst Biol 61:22–43

    Article  PubMed  Google Scholar 

  • Maddison WP (1997) Gene trees in species trees. Syst Biol 46:523–536

    Article  Google Scholar 

  • Mayden RL, Chen WJ (2010) The world’s smallest vertebrate species of the genus Paedocypris: a new family of freshwater fishes and the sister group to the world’s most diverse clade of freshwater fishes (Teleostei: Cypriniformes). Mol Phylogen Evol 57:152–175

    Article  Google Scholar 

  • Mazel F, Mooers A, Riva GVD, Pennell MW (2017) Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity. Syst Biol, Syst. https://doi.org/10.1093/sysbio/syx054

    Book  Google Scholar 

  • Misof B et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  PubMed  CAS  Google Scholar 

  • Morrison DA, Morgan MJ, Kelchner SA (2015) Molecular homology and multiple-sequence alignment: an analysis of concepts and practice. Aust Syst Bot 28:46–62

    Article  Google Scholar 

  • Müller GB (2003) Homology: the evolution of morphological organization. In: Müller GB, Newman SA (eds) Origination of organismal form: beyond the gene in developmental and evolutionary biology. The MIT Press, Cambridge, pp 51–69

    Google Scholar 

  • Nixon KC, Wheeler QD (1992) Measures of phylogenetic diversity. In: Novacek MJ, Wheeler QD (eds) Extinction and phylogeny. Columbia University Press, New York, p 216

    Google Scholar 

  • O’Reilly J, Puttick M, Parry L, Tanner A, Tarver J, Fleming J, Pisani D, Donoghue P (2016) Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol Lett 12:20160081

    Article  PubMed  PubMed Central  Google Scholar 

  • Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625

    Article  Google Scholar 

  • Philippe H, Brinkmann H, Lavrov DV, Timothy D, Littlewood J, Manuel M, Wörheide G, Baurain D (2011) Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 9:402

    Article  CAS  Google Scholar 

  • Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573

    Article  PubMed  CAS  Google Scholar 

  • Pyron RA (2014) Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians. Syst Biol 63:779–797

    Article  PubMed  Google Scholar 

  • Pyron RA, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61:543–583

    Article  PubMed  Google Scholar 

  • Reddy S et al (2017) Why do phylogenomics data sets yield conflicting trees? Data type influences the avian Tree of Life more than taxon sampling. Syst Biol 66:857–879

    Article  PubMed  Google Scholar 

  • Remane A (1952) Die Grundlagen des naturlichen Systems der verleichenden Anatomie und der Phylogenetik. Geest und Portig K. G, Leipzig

    Google Scholar 

  • Ribeiro PL, Rapini A, Silva UCS, van den Berg C (2012) Using multiple analytical methods to improve phylogenetic hypotheses in Minaria (Apocynaceae). Mol Phylogenet Evol 65:915–925

    Article  PubMed  Google Scholar 

  • Rieppel OC (1988) Fundamentals of comparative biology. Birkhäuser Verlag, Basel

    Google Scholar 

  • Rieppel O (2004) The language of systematics, and the philosophy of “total evidence”. Syst Biodivers 2:9–19

    Article  Google Scholar 

  • Rieppel O (2007) The performance of morphological characters in broad-scale phylogenetic analysis. Biol J Linn Soc 92:297–308

    Article  Google Scholar 

  • Rieppel O (2015) Book review: Wagner, G.P. 2014. Homology, genes, and evolutionary innovation. Princeton University Press, Princeton. J Zool Syst Evol Res 53:95

    Article  Google Scholar 

  • Rindal E, Brower AVZ (2011) Do model-based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics 27:331–334

    Article  Google Scholar 

  • Rokas A, Carroll SB (2006) Bushes in the Tree of Life. PLoS Biol 4:1899–1904

    Article  CAS  Google Scholar 

  • Rolland J et al (2012) Using phylogenies in conservation: new perspectives. Biol Lett 23:692–694

    Article  Google Scholar 

  • Ronse De Craene LP, Brockington SF (2013) Origin and evolution of petals in angiosperms. Plant Ecol Evol 146:5–25

    Article  Google Scholar 

  • Rosenberg MS, Kumar S (2001) Incomplete taxon sampling is not a problem for phylogenetic inference. Proc Nat Acad Sci USA 98:10751–10756

    Article  PubMed  CAS  Google Scholar 

  • Sauquet H et al (2017) The ancestral flower of angiosperms and its early diversification. Nat Commun 8:16047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuh RT, Brower AVZ (2009) Biological systematics: principles and applications. Cornell University Press, New York

    Google Scholar 

  • Scotland RW (2010) Deep homology: a view from systematics. BioEssays 32:438–449

    Article  PubMed  Google Scholar 

  • Scotland RW (2011) What is parallelism? Evol Dev 3:214–227

    Article  Google Scholar 

  • Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52:539–548

    Article  PubMed  Google Scholar 

  • Sereno P (2007) Logical basis for morphological characters in phylogenetics. Cladistics 23:565–587

    Google Scholar 

  • Shirley MH, Vliet KA, Carr AN, Austin JD (2014) Rigorous approach to species delimitation have significant implications for African crocodilian systematics and conservation. Proc R Soc B 281:20132483

    Article  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:418–423

    Google Scholar 

  • Smith ND, Turner AH (2005) Morphology’s role in phylogeny reconstruction: perspectives from paleontology. Syst Biol 54:166–173

    Article  PubMed  Google Scholar 

  • Spencer M, Susko E, Roger AJ (2005) Likelihood, parsimony, and heterogeneous evolution. Mol Biol Evol 22:1161–1164

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100:603–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucker CM et al (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715

    Article  PubMed  Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? Systematics and the agony of choice. Biol Conserv 55:235–254

    Article  Google Scholar 

  • Vogt L (2017) Assessing similarity: on homology, characters and the need for a semantic approach to non-evolutionary comparative homology. Cladistics 33:513–539

    Article  Google Scholar 

  • Wägele JW, Letsch H, Klussmann-Kolb A, Mayer C, Misof B, Wägele H (2009) Phylogenetic support values are not necessarily informative: the case of the Serialia hypothesis (a mollusk phylogeny). Front Zool 6:1–15

    Article  CAS  Google Scholar 

  • Wagner GP (2014) Homology, genes, and evolutionary innovation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–500

    Article  Google Scholar 

  • Wiens JJ (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol 52:528–538

    Article  PubMed  Google Scholar 

  • Wiens JJ (2004) The role of morphological data in phylogeny reconstruction: a reply to Scotland et al. (2003). Syst Biol 53:653–661

    Article  PubMed  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204

    Article  PubMed  Google Scholar 

  • Wright A, Hillis D (2014) Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS ONE 9:e109210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I thank Andrew Brower, José A.F. Diniz-Filho, Joaquín Hortal, and an anonymous referee for providing helpful comments on early draft of this article. This does not imply they totally agree with me. I hope our points of view stimulate a critical reflection on the use phylogenetic hypotheses in ecology and conservation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro C. S. Assis.

Additional information

Communicated by David Hawksworth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assis, L.C.S. Revisiting the Darwinian shortfall in biodiversity conservation. Biodivers Conserv 27, 2859–2875 (2018). https://doi.org/10.1007/s10531-018-1573-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1573-3

Keywords

Navigation