Skip to main content

Advertisement

Log in

Cyanobacteria in mangrove ecosystems

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Mangroves are subject to the effects of tides and fluctuations in environmental conditions, which may reach extreme conditions. These ecosystems are severely threatened by human activities despite their ecological importance. Although mangroves are characterized by a highly specialized but low plant diversity in comparison to most other tropical ecosystems, they support a diverse microbial community. Adapted microorganisms in soil, water, and on plant surfaces perform fundamental roles in nutrient cycling, especially nitrogen and phosphorus. Cyanobacteria contribute to carbon and nitrogen fixation and their cells act as phosphorus storages in ecosystems with extreme or oligotrophic environmental conditions such as those found in mangroves. As the high plant productivity in mangroves is only possible due to interactions with microorganisms, cyanobacteria may contribute to these ecosystems by providing fixed nitrogen, carbon, and herbivory-defense molecules, xenobiotic biosorption and bioremediation, and secreting plant growth-promoting substances. In addition to water, cyanobacterial colonies have been detected on sediments, rocks, decaying wood, underground and aerial roots, trunks, and leaves. Some mangrove cyanobacteria were also found in association to algae or seagrasses. Few studies on mangrove cyanobacteria are available, but together they have reported a substantial number of species in these ecosystems. However, the cyanobacterial diversity in this biome has been traditionally underestimated. Though mangrove communities generally host cyanobacterial taxa commonly found in marine environments, unique microhabitats found in mangroves potentially harbor several undescribed cyanobacterial taxa. The relevance of cyanobacteria for mangrove conservation is highlighted in their use for the recovery of degraded mangroves as biostimulants or in bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adger WN, Hughes TP, Folke C, Carpenter SR, Rockström J (2005) Social-ecological resilience to coastal disasters. Science 309:1036–1039

    CAS  PubMed  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349

    Google Scholar 

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf S 76:1–13

    Google Scholar 

  • Alongi DM (2009) Paradigm shifts in mangrove biology. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach. Elsevier, Amsterdam, pp 615–640

    Google Scholar 

  • Andreote FD, Jiménez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG, Melo IS (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7:e38600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee A, Santra SC (2001) Phytoplankton of the rivers of Indian Sundarban mangrove estuary. Indian Biologist 33:67–71

    Google Scholar 

  • Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees 16:159–166

    CAS  Google Scholar 

  • Bashan Y, Puente MW, Myrold DD, Toledo G (1998) In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings. FEMS Microbiol Ecol 26:165–170

    CAS  Google Scholar 

  • Becher PG, Jütnner F (2005) Inseticidal compounds of the biofilm-forming cyanobacterium Fischerella sp. (ATCC 43239). Environ Toxicol 20:363–372

    CAS  PubMed  Google Scholar 

  • Bentley BL, Carpenter EJ (1984) Direct transfer of newly-fixed nitrogen from free-living epiphyllous microorganisms to their host plant. Oecologia 63:109–113

    Google Scholar 

  • Bodelier PLE (2011) Toward understanding, managing, and protecting microbial ecosystems. Front Microbiol 2:80

    PubMed Central  PubMed  Google Scholar 

  • Boopathi T, Balamurugan V, Gopinath S, Sundararaman M (2013) Characterization of IAA production by the mangrove cyanobacterium Phormidium sp. MI405019 and its influence on tobacco seed germination and organogenesis. J Plant Growth Regul 32:758–766

    CAS  Google Scholar 

  • Bouchez A, Pascault N, Chardon C, Bouvy M, Cecchi P, Lambs L, Herteman M, Fromard F, Got P, Leboulanger C (2013) Mangrove microbial diversity and the impact of trophic contamination. Mar Pollut Bull 66:39–46

    CAS  PubMed  Google Scholar 

  • Branco LHZ, Silva SMF, Sant’Anna CL (1994) Stichosiphon mangle sp. nova, a new cyanophyte from mangrove environments. Arch Hydrobiol Suppl Algol Stud 72:1–7

    Google Scholar 

  • Branco LHZ, Sant’Anna CL, Azevedo MTP, Sormus L (1996) Cyanophyte flora from Cardoso Island mangroves, São Paulo state, Brazil. 1. Chroococcales. Arch Hydrobiol Suppl Algol Stud 80:101–113

    Google Scholar 

  • Branco LHZ, Sant’Anna CL, Azevedo MTP, Sormus L (1997) Cyanophyte flora from Cardoso Island mangroves, São Paulo state, Brazil. 2. Oscillatoriales. Arch Hydrobiol Suppl Algol Stud 84:39–52

    Google Scholar 

  • Branco LHZ, Moura AN, Silva AC, Bittencourt-Oliveira MC (2003) Biodiversidade e considerações biogeográficas das Cyanobacteria de uma área de manguezal do estado de Pernambuco, Brasil. Acta Bot Bras 17:585–596

    Google Scholar 

  • Cockel CS, Jones HL (2009) Advancing the case for microbial conservation. Oryx 43:520–526

    Google Scholar 

  • Danielsen F, Sorensen MK, Olwig MF, Selvam V, Parish F, Burgess ND, Hiraishi T, Karunagaram VM, Rasmussen MS, Hansen LB, Quarto A, Suryadiputra N (2005) The Asian tsunami: a protective role for coastal vegetation. Science 310:643

    CAS  PubMed  Google Scholar 

  • Dittmar T, Lara RJ, Kattner G (2001) River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters. Mar Chem 73:253–271

    CAS  Google Scholar 

  • Dor I (1984) Epiphytic blue-green algae (Cyanobacteria) of the Sinai mangal: considerations on vertical zonation and morphological adaptations. In: Por FD, Dor I (eds) Hydrobiology of the Mangal. Dr. W Junk, Hague, pp 33–54

    Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change 3:961–968

    CAS  Google Scholar 

  • Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas AJ (2011) Potential use of cyanobacteria in bioremediation of industrial effluents. Afr J Biotechnol 10:1125–1132

    Google Scholar 

  • Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH, Dorrestein PC, Gerwick WH (2011) Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 13:1601–1610

    PubMed Central  CAS  PubMed  Google Scholar 

  • Engene N, Rottacker EC, Kaštovský J, Byrum T, Choi H, Ellisman MH, Komárek J, Gerwick WH (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62:1171–1178

    PubMed Central  PubMed  Google Scholar 

  • Fasanella CC, Dias ACF, Rigonato J, Fiore MF, Soares FB Jr, Melo IS, Pizzirani-Kleiner AA, van Elsas JD, Andreote FD (2012) The selection exerted by oil contamination on mangrove fungal communities. Water Air Soil Pollut 223:4233–4243

    CAS  Google Scholar 

  • Ferrão-Filho AS, Kozlowaky-Suzuki B (2011) Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs 9:2729–2772

    PubMed Central  Google Scholar 

  • Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a costa rican premontane rain forest. Oecologia 17:9–18

    Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20:154–159

    Google Scholar 

  • Gomez-Garcia MR, Fazeli F, Grote A, Grossman AR, Bhaya D (2013) Role of polyphosphate in thermophilic Synechococcus sp. from microbial mats. J Bacteriol 195:3309–3319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255

    PubMed Central  PubMed  Google Scholar 

  • Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographical patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506

    CAS  PubMed  Google Scholar 

  • Hoffmann L, Komárek J, Kastovsky J (2005) System of cyanoprokaryotes (Cyanobacteria): state in 2004. Algol Stud 117:95–115

  • Holguin G, Bashan Y (1996) Nitrogen fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biol Biochem 28:1651–1660

    CAS  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    CAS  Google Scholar 

  • Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF (2008) Resource partitioning and sympatric speciation among closely related bacterioplankton. Science 320:1081–1085

    CAS  PubMed  Google Scholar 

  • Hussain MI, Khoja TM (1993) Intertidal and subtidal blue-green algal mats of open and mangrove areas in the Farasan Archipelago (Saudi Arabia), Red Sea. Bot Mar 36:377–388

    Google Scholar 

  • Jadoon WA, Nakai R, Naganuma T (2013) Biogeographical note on Antarctic microflorae: endemism and cosmopolitanism. Geosci Front 4:633–646

    Google Scholar 

  • Johnson ZI, Zinser ER, Coe A, McNulty NP, Malcolm E, Woodward S, Chrisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740

    CAS  PubMed  Google Scholar 

  • Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744

    CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    CAS  Google Scholar 

  • Kannan L, Vasantha K (1992) Microphytoplankton of the Pichavaram mangals, south east coast of India: species composition and population density. Hydrobiologia 247:77–86

    Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Google Scholar 

  • Komárek J (1985) Do all cyanophytes have a cosmopolitan distribution? Survey of the freshwater cyanophyte flora of Cuba. Arch Hydrobiol Suppl Algol Stud 38–39:359–386

    Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove: a review. Aquat Bot 89:128–137

    Google Scholar 

  • Kusmana C (2014) Distribution and current status of mangrove forests in Indonesia. In: Faridah-Hanum I, Latiff A, Hakeem KR, Ozturk M (eds) Mangrove ecosystems in asia. Springer, New York, pp 37–60

    Google Scholar 

  • Kyaruzi JJ, Kyewalyanga MS, Muruke MHS (2003) Cyanobacteria composition and impact of seasonality on their in situ nitrogen fixation rate in a mangrove ecosystem adjacent to Zanzibar town. West Indian Ocean J Mar Sci 2:35–44

    Google Scholar 

  • Lambert G, Steinke TD, Naidoo Y (1989) Algae associated with mangroves in southern African estuaries: cyanophyceae. S Afr J Bot 55:476–491

    Google Scholar 

  • Larkum AWD, Chen M, Li Y, Scliep M, Trampe E, West J, Salih A, Kühl M (2012) A novel epiphytic chlorophyll D-containing cyanobacterium isolated from a mangrove-associated red alga. J Phycol 48:1320–1327

    Google Scholar 

  • Lovelock CE, Grinham A, Adame MF, Penrose HM (2010) Elemental composition and productivity of cyanobacterial mats in an arid zone estuary in north western Australia. Wetl Ecol Manag 18:37–47

    CAS  Google Scholar 

  • Lugomela C, Bergman B (2002) Biological N2-fixation on mangrove pneumatophores: preliminary observations and perspectives. Ambio 31:612–613

    PubMed  Google Scholar 

  • Lugomela C, Bergman B, Waterbury J (2001) Cyanobacterial diversity and nitrogen fixation in coastal areas around Zanzibar, Tanzania. Arch Hydrobiol Suppl Algol Stud 103:95–115

    Google Scholar 

  • Mani P (1992) Natural phytoplankton communities in Pichavaram mangroves. Ind J Mar Sci 21:278–280

    Google Scholar 

  • Mann FD, Steinke TD (1993) Biological nitrogen-fixation (acetylene reduction) associated with blue-green algal (cyanobacterial) communities in the Beachwood Mangrove Nature Reserve: II. Seasonal variation in acetylene reduction activity. S Af J Bot 59:1–8

    CAS  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    CAS  PubMed  Google Scholar 

  • Mollenhauer D, Bengtsson R, Lindstrøm EA (1999) Macroscopic cyanobacteria of the genus Nostoc: a neglected and endangered constituent of European inland aquatic biodiversity. Eur J Phycol 34:349–360

    Google Scholar 

  • Nabout JC, Rocha BS, Carneiro FM, Sant’Anna CL (2013) How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodivers Conserv 22:2907–2918

    Google Scholar 

  • Naidoo Y, Steinke TD, Mann FD, Bhatt A, Gairola S (2008) Epiphytic organisms on the pneumatophores of the mangrove Avicennia marina: occurrence and possible function. Afr J Plant Sci 1:12–15

    Google Scholar 

  • Nedumaran T, Thillairajasekar K, Perumal P (2008) Mangrove associated cyanobacteria at Pichavaram, Tamilnadu. Seaweed Res Utiln 30:77–85

    Google Scholar 

  • Neves MHB, Tribuzi D (1992) Les Cyanophycées de la mangrove de la “Ponta do Pai Vitório” de la région de Cabo Frio (RJ, Brésil). Acta Biol Leopold 14:29–52

    Google Scholar 

  • Nogueira NMC, Ferreira-Correia MM (2001) Cyanophyceae/cyanobacteria in red mangrove forest at Mosquitos and Coqueiros estuaries, São Luís, state of Maranhão, Brazil. Bras J Biol 61:347–356

    CAS  Google Scholar 

  • Orchard ED, Benitez-Nelson CR, Pellechia PJ, Lomas MW, Dyhrman ST (2010) Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol Oceanogr 55:2161–2169

    CAS  Google Scholar 

  • Paling EI, McComb AJ (1994) Cyanobacterial mats: a possible nitrogen source for arid-coast mangroves. Int J Ecol Environ Sci 20:47–54

    Google Scholar 

  • Pérez-Estrada CJ, León-Tejera H, Serviere-Zaragoza E (2012) Cyanobacteria and macroalgae from an arid environment mangrove on the east coast of the Baja California Peninsula. Bot Mar 55:187–196

    Google Scholar 

  • Phillips A, Lambert G, Granger JE, Steinke TD (1996) Vertical zonation of epiphytic algae associated with Avicennia marina (Forssk.) Vierh. pneumatophores at Beachwood Mangroves Nature Reserve, Durban, South Africa. Bot Mar 39:167–175

    Google Scholar 

  • Pimm SL, Raven P (2000) Extinction by numbers. Nature 403:843–845

    CAS  PubMed  Google Scholar 

  • Pittman SJ, Pittman KM (2005) Short-term consequences of a benthic cyanobacterial bloom (Lyngbya majuscula Gomont) for fish and penaeid prawns in Moreton Bay (Queensland, Australia). Estuar Coast Shelf S 63:619–632

    CAS  Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Nam VN, Ong JE, Primavera JH, Salmo SG III, Sanciangco JC, Sukardjo S, Wang Y, Yong JWH (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5:e10095

    PubMed Central  PubMed  Google Scholar 

  • Polz MF, Hunt DE, Preheim SP, Weinreich DM (2006) Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Phil Trans R Soc B 361:2009–2021

    PubMed Central  PubMed  Google Scholar 

  • Potts M (1979) Nitrogen fixation (acetylene reduction) associated with communities of heterocystous and non-heterocystous blue-green algae in mangrove forests of Sinai. Oecologia 39:359–373

    Google Scholar 

  • Potts M (1980) Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 19:60–73

    Google Scholar 

  • Pramanik A, Sundararaman M, Das S, Ghosh U, Mukherjee J (2011) Isolation and characterization of cyanobacteria possessing antimicrobial activity from the Sundarbans, the world’s largest tidal mangrove forest. J Phycol 47:731–743

    Google Scholar 

  • Raghukumar C, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    CAS  PubMed  Google Scholar 

  • Ramachandran S, Venugopalan VK (1987) Nitrogen fixation by bluegreen algae in Portonovo marine environments. J Mar Biol Ass India 29:337–343

    Google Scholar 

  • Ray R, Majumder N, Das S, Chowdhury C, Jana TK (2014) Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem, east coast of India. Mar Chem. doi:10.1016/j.marchem.2014.04.007

    Google Scholar 

  • Rejmánková E, Komárek J, Komárková J (2004) Cyanobacteria—a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Divers Distrib 10:189–199

    Google Scholar 

  • Rigonato J, Alvarenga DO, Andreote FD, Dias ACF, Melo IS, Fiore MF (2012) Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol Ecol 80:312–322

    CAS  PubMed  Google Scholar 

  • Rigonato J, Kent AD, Alvarenga DO, Andreote FD, Beirigo RM, Vidal-Torrado R, Fiore MF (2013) Drivers of cyanobacterial diversity in mangrove soils in south-east Brazil. Environ Microbiol 15:1103–1114

    CAS  PubMed  Google Scholar 

  • Ripkka R, Deruelles J, Waterbury JB, Herdman M, Stanier MY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sakthivel K, Kathiresan K (2012) Antimicrobial activities of marine cyanobacteria isolated from mangrove environment of south east coast of India. J Nat Prod 5:147–156

    Google Scholar 

  • Sakthivel K, Kathiresan K (2013) Cyanobacterial diversity from mangrove sediment of south east coast of India. Asian J Biodivers 4:190–203

    Google Scholar 

  • Sant’Anna CL (1988) Scytonemataceae (Cyanophyceae) from the state of São Paulo, southern Brazil. Nova Hedwig 46:519–539

    Google Scholar 

  • Santos HF, Carmo FL, Paes JES, Rosado AS, Peixoto RS (2011) Bioremediation of mangroves impacted by petroleum. Water Air Soil Poll 216:329–350

    CAS  Google Scholar 

  • Santra SC, Pal UC, Maity H, Bandyopadhyaya G (1988) Blue-green algae in saline habitats of West Bengal: systematic account. Biol Mem 14:81–108

    Google Scholar 

  • Selvakumar G, Sundararaman M (2001) Mangrove associated cyanobacterial species in Muthupet estuary. Seaweed Res Utiln 23:19–22

    Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585

    Google Scholar 

  • Silambarasan G, Ramanathan T, Kathiresan K (2012) Diversity of marine cyanobacteria from three mangrove environment in Tamil Nadu Coast, south east coast of India. Curr Res J Biol Sci 4:235–238

    Google Scholar 

  • Silva SMF (1991) Cyanophyceae associated with mangrove trees at Inhaca Island, Mozambique. Bothalia 21:143–150

    Google Scholar 

  • Silva CSP, Genuário DB, Vaz MGMV, Fiore MF (2014) Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst Appl Microbiol 37:100–112

    CAS  PubMed  Google Scholar 

  • Simmons TL, Coates RC, Clark BR, Engene N, González D, Esquenazi E, Dorrestein PC, Gerwick WH (2008) Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci USA 105:4587–4594

    PubMed Central  CAS  PubMed  Google Scholar 

  • Staley JT (1997) Biodiversity: are microbial species threatened? Curr Opin Biotechnol 8:340–345

    CAS  PubMed  Google Scholar 

  • Stewart WDP (1963) Liberation of extracellular nitrogen by two nitrogen-fixing blue-green algae. Nature 200:1020–1021

    CAS  PubMed  Google Scholar 

  • Sundararaman M, Boopathi T, Gopinath S (2007) Status of mangrove ecosystem: exploring the potential role of cyanobacteria in restoration and afforestation. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 211–224

    Google Scholar 

  • Thatoi H, Behera BC, Mishra RR, Dutta SK (2013) Biodiversity and biotechnology potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63:1–19

    CAS  Google Scholar 

  • Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science 307:1311–1313

    CAS  PubMed  Google Scholar 

  • Toledo G, Bashan Y, Soeldner A (1995a) Cyanobacteria and black mangroves in northeastern Mexico: colonization, and diurnal and seasonal nitrogen fixation on aerial roots. Can J Microbiol 41:999–1011

    CAS  Google Scholar 

  • Toledo G, Bashan Y, Soeldner A (1995b) In vitro colonization and increase in nitrogen-fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacterium. Can J Microbiol 1:1012–1020

    Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    CAS  Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815

    Google Scholar 

  • Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, Vijver BV, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113

    Google Scholar 

  • Williams DM (2011) Historical biogeography, microbial endemism and the role of classification: everything is endemic. In: Fontaneto D (ed) Biogeography of microscopic organisms: is everything small everywhere?. Cambrige University Press, Cambridge, pp 11–31

    Google Scholar 

  • Zehr JP (2011) Nitrogen fixation by marine cyanobacteria. Trends Microbiol 19:162–173

    CAS  PubMed  Google Scholar 

  • Zhubanova AA, Ernazarova AK, Kaiyrmanova GK, Zayadan BK, Savitskaya IS, Abdieva GZ, Kistaubaeva AS, Akimbekov NS (2013) Construction of cyanobacterial-bacterial consortium on the basis of axenic cyanobacterial cultures and heterotrophic bacteria cultures for bioremediation of oil-contaminated soils and water ponds. Russ J Plant Physiol 60:555–562

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the São Paulo Research Foundation (FAPESP/BIOTA 2004/13910-6) for mangrove research support. D.O.A. was supported by FAPESP and National Council for Scientific and Technological Development (CNPq) graduate fellowships (Grants 2008/52556-4 and 132494/2010-8, respectively). J.R. was supported by Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) National Postdoctoral Program. M.F.F. would also like to thank CNPq for a research fellowship (306607/2012-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marli Fátima Fiore.

Additional information

Communicated by Anurag chaurasia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarenga, D.O., Rigonato, J., Branco, L.H.Z. et al. Cyanobacteria in mangrove ecosystems. Biodivers Conserv 24, 799–817 (2015). https://doi.org/10.1007/s10531-015-0871-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0871-2

Keywords

Navigation