Skip to main content
Log in

Identifying priority areas for conservation of spadefoot toad, Pelobates fuscus insubricus using a maximum entropy approach

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

In this study, we used a maximum entropy (MaxEnt) approach to model the distribution of the rare European amphibian Pelobates fuscus insubricus, with the final goal of identifying suitable areas for its conservation. We generated the model starting from a dataset of all locations where this species’ presence was confirmed for the region of piedmont in 2004–2010, which consisted of only 15 occurrence records. To verify the working hypothesis that population survival is higher in areas where Maxent identifies higher distribution probability values, we used suitability indexes generated by the model to compare the “historical” (before 1980) and “recent” (1980–1996) distributions of P. f. insubricus populations in the piedmont region. The average area-under-the-curve value (0.878, s = 0.075) of the Maxent model proved significantly informative. Using the Bonferroni confidence interval, we demonstrated that surviving populations occupy geographic areas characterized by significantly higher potential suitability (p < 0.05), and we selected areas accordingly. We therefore conclude that, in our case study, modelling the distribution of rare species may represent a useful strategy to select areas where these species are likely to persist. To further evaluate this approach, we suggest testing it on the study of other rare species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. LIFE98 NAT/IT/005095, Urgent actions for conservation of P. f. insubricus. Available on line at: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.createPage&s_ref=LIFE98%20NAT%2FIT%2F005095&area=1&yr=1998&n_proj_id=287&cfid=16439996&cftoken=2e36c17-000970bf-7fa4-1468-b5d5-839b11f70000&mode=print&menu=false. Accessed September 2011.

  2. LIFE00 NAT/IT/007233 - Pelobates Project in the Ticino Valley Natural Park of Piedmont. Available on line at: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=1760. Accessed September 2011.

References

  • Aebischer NJ, Robertson PA (1993) Testing for resource use and selection by marine birds: a comment. J Field Ornithol 65:210–213

    Google Scholar 

  • Aguilera AM, Escabias M, Valderrama MJ (2006) Using principal components for estimating logistic regression with high-dimensional multicollinear data. Comput Stat Data Anal 50:1905–1924

    Article  Google Scholar 

  • Anderson RP, Gómez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141

    Article  Google Scholar 

  • Andreone F (2000) Pelobates fuscus insubricus: distribuzione, biologia e conservazione di un taxon minacciato. Piano d’Azione—Action Plan. Progetto LIFE-NATURA 1998 “Azioni urgenti per la conservazione di Pelobates fuscus insubricus” n. B4-3200/98/486, WWF Italia

  • Andreone F, Sindaco R (eds) (1999) Erpetologia del Piemonte e della Valle d’Aosta. Atlante degli Anfibi e dei Rettili. Monografie XXVI Museo Regionale di Scienze Naturali, Torino

  • Andreone F, Eusebio Bergò P, Bovero S, Gazzaniga E (2004) On the edge of extinction? The spadefoot Pelobates fuscus insubricus in the Po Plain, and a glimpse at its conservation biology. Ital J Zool 71:61–72

    Article  Google Scholar 

  • Araújo MB, Pearson RG (2005) Equilibrium of species’ distributions with climate. Ecography 28:693–695

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Arntzen J (2006) From descriptive to predictive distribution models: a working example with Iberian amphibians and reptiles. Front Zool 3:8. doi:10.1186/1742-9994-3-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arntzen J, Themudo GE (2008) Environmental parameters that determine species geographical range limits as a matter of time and space. J Biogeogr 35:1177–1186

    Article  Google Scholar 

  • Beebee TJC, Griffiths RA (2007) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285

    Article  Google Scholar 

  • Biancotti A, Carotta M, Motta L, Turroni E (1998) Le precipitazioni nevose sulle Alpi piemontesi. Trentennio 1966–1996. Collana Studi Climatol Piemonte 2:11–80

    Google Scholar 

  • Borda T, Withers PJA, Sacco D, Zavattaro L, Barberis E (2010) Predicting mobilization of suspended sediments and phosphorus from soil properties: a case study from the north west Po valley, Piemonte, Italy. Soil Use Manage 26:310–319

    Article  Google Scholar 

  • Byers CR, Steinhorst RK (1984) Clarification of a technique for analysis of utilization-availability data. J Wildlife Manage 48:1050–1053

    Article  Google Scholar 

  • Cornalia E (1873) Sul Pelobates fuscus, trovato per la prima volta nei dintorni di Milano. Rendiconti R. Istituto Lombardo Sci. Lett. Classe Sci. Fis. Mat. Milano, 6-Ser.2:295–299

  • Council Directive (1992) 92/43/EEC of 21 May on the conservation of natural habitats and of wild fauna and flora. (The ‘Habitats Directive’). Official J L206:7–50

    Google Scholar 

  • Crottini A, Andreone F (2007) Conservazione di un anfibio iconico: lo status di Pelobates fuscus in Italia e linee guida d’azione. Quaderni della Stazione di Ecologia del civico Museo di Storia Naturale di Ferrara 17:67–76

    Google Scholar 

  • Crottini A, Andreone F, Kosuch J, Borkin LJ, Litvinchuk SN, Eggert C, Veith M (2007) Fossorial but widespread: the phylogeography of the common spadefoot toad (Pelobates fuscus), and the role of the Po Valley as a major source of genetic variability. Mol Ecol 16:2734–2754

    Article  PubMed  Google Scholar 

  • D’Amen M, Bombi P (2009) Global warming and biodiversity: evidence of climate-linked amphibian declines in Italy. Biol Conserv 142:3060–3067

    Article  Google Scholar 

  • Di Minin E, Griffiths RA (2011) Viability analysis of a threatened amphibian population: modelling the past, present and future. Ecography 34:162–169

    Article  Google Scholar 

  • Domíguez-Vega H, Monroy-Vilchis O, Balderas-Valdivia CJ, Gienger CM, Ariano-Sánchez D (2012) Predicting the potential distribution of the beaded lizard and identification of priority areas for conservation. J Nat Conserv 20:247–253

    Article  Google Scholar 

  • Eggert C, Guyétant R (2002) Safeguard of a spadefoot toad (Pelobates fuscus) population: a French experience. In: Ferri V (ed) Atti III Conv. “Salvaguardia Anfibi”, Lugano, pp 47–52

  • Eggert C, Cogălniceanu D, Veith M, Dzukic G, Taberlet P (2006) The declining Spadefoot toad, Pelobates fuscus (Pelobatidae): paleo and recent environmental changes as a major influence on current population structure and status. Conserv Genet 7:185–195

    Article  Google Scholar 

  • Elith J (2002) Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In: Ferson S, Burgman M (eds) Quantitative methods for conservation biology. Springer, New York, pp 39–58

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fuller T, Thomassen HA, Mulembakani PM, Johnston SC, Lloyd-Smith JO, Kisalu NK, Lutete TK, Blumberg S, Fair JN, Wolfe ND, Shongo RL, Formenty P, Meyer H, Wright LL, Muyembe JJ, Buermann W, Saatchi SS, Okitolonda E, Hensley L, Smith TB, Rimoin AW (2011) Using remote sensing to map the risk of human monkeypox virus in the Congo Basin. EcoHealth 8:14–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Giacoma C, Tontini L, Seglie D (2009) Monitoraggio status delle popolazioni di Pelobates fuscus presenti in Piemonte e loro gestione. Relazione 2009. LIFE00 NAT/IT/007233 Technical Report

  • Girardello M, Griggio M, Whittingham MJ, Rushton SP (2010) Models of climate associations and distributions of amphibians in Italy. Ecol Res 25:103–111

    Article  Google Scholar 

  • Godown ME, Peterson AT (2000) Preliminary distributional analysis of US endangered bird species. Biodivers Conserv 9:1313–1322

    Article  Google Scholar 

  • Gottero F, Ebone A, Terzuolo P, Camerano P (2007) I boschi del Piemonte, conoscenze e indirizzi gestionali. Regione Piemonte, Blu Edizioni, Torino

    Google Scholar 

  • Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species ranges and species richness. Glob Ecol Biogeogr 15:578–587

    Article  Google Scholar 

  • Griffiths R, Pavajeau L (2008) Captive breeding, reintroduction, and the conservation of amphibians. Conserv Biol 22:852–861

    Article  PubMed  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hernandez PA, Franke I, Herzog SK, Pacheco V, Paniagua L et al (2008) Predicting species distributions in poorly-studied landscapes. Conserv Biol 17:1353–1366

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Loiselle BA, Jørgensen PM, Consiglio T, Jiménez I, Blake JG, Lohmann LG, Montiel OM (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35:105–116

    Google Scholar 

  • McCabe GP (1984) Principal variables. Technometrics 2:137–144

    Article  Google Scholar 

  • Nemhard DA (2003) Mining Human Performance Data. In: Ye Nong (ed) The Handbook of data mining. Lawrence Erlbaum Associates, New Jersey

    Google Scholar 

  • Neu CW, Byers CR, Peek JM (1974) A technique for analysis of utilization-availability data. J Wildlife Manage 38:541–545

    Article  Google Scholar 

  • Nix H (1986) A biogeographic analysis of Australian elapid snakes. In: Longmore R (ed) Atlas of elapid snakes of Australia. Bureau of Flora and Fauna, Canberra, pp 4–15

    Google Scholar 

  • Nöllert A (1990) Die Knoblauchkröte. Ziemsen, Wittenberg Lutherstadt

    Google Scholar 

  • Nöllert A (1997) Pelobates fuscus (Laurenti, 1768). In: Gasc JP et al. (eds) Atlas of Amphibians and Reptiles in Europe. Societas Europaea Herpetologica, Museum National d’Histoire Naturelle, Paris, pp 110–111

  • Nyström P, Birkedal L, Dahlberg C, Brnömark KC (2002) The declining spadefoot toad Pelobates fuscus: calling site choice and conservation. Ecography 25:488–498

    Article  Google Scholar 

  • Orizaola G, Quintela M, Laurila A (2010) Climatic adaptation in an isolated and genetically impoverished amphibian population. Ecography 33:730–737

    Article  Google Scholar 

  • Pearce J, Lindenmayer D (1998) Bioclimatic analysis to enhance reintroduction biology of the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in south-eastern Australia. Restor Ecol 6:238–243

    Article  Google Scholar 

  • Pearman PB, D’Amen M, Graham CH, Thuiller W, Zimmermann NE (2010) Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33:990–1003

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees D (2006) Model-based uncertainty in species’ range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species’ distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modelling. Proceedings of the 21st international conference on machine learning. ACM Press, New York, pp 655–662

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pous P, Beukema W, Weterings M, Dümmer I, Geniez P (2011) Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: a preliminary assessment. Biodivers Conserv 20:89–118

    Article  Google Scholar 

  • Rannap R, Markus M, Kaart T (2013) Habitat use of the common spadefoot toad (Pelobates fuscus) in Estonia. Amphib-Reptil 34:51–62

    Article  Google Scholar 

  • Regione Piemonte (2006) Prima relazione sullo stato dell’ambiente in Piemonte. Assessorato Ambiente, Parchi e aree protette, Energia, Risorse idriche, Acque minerali e termali 116–117:29

  • Rondinini C, Battistoni A, Peronace V, Teofili C (2013) Lista Rossa IUCN dei Vertebrati Italiani. Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Roma, p 56

  • Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods Ecol Evol 3:545–554

    Article  Google Scholar 

  • Sánchez-Cordero V, Martinez-Meyer E (2000) Museum specimen data predict crop damage by tropical rodents. P Natl Acad Sci USA 97:7074–7077

    Article  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128

    Article  Google Scholar 

  • Svenning JC, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Tontini L, Seglie D, Boffino G, Sacco M, Ferri V, Giacoma C (2008) Impatto della realizzazione di un sito sostitutivo per la riproduzione di Pelobates fuscus effettuata dal Parco del Ticino piemontese. In: Corti C (ed) Herpetologia Sardiniae. Societas Herpetologica Italica. Edizioni Belvedere, Latina, p 482–486

  • Trisurat Y, Bhumpakphan N, Reed DH, Kanchanasaka B (2012) Using species distribution modeling to set management priorities for mammals in northern Thailand. J Nat Conserv. doi:10.1016/j.jnc.2012.05.002

    Google Scholar 

  • Williams PH, Araújo MB (2000) Using probability of persistence to identify important areas for biodiversity conservation. P Roy Soc B-Biol Sci Ser B 267:1959–1966

    Article  CAS  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan, A (2008) NCEAS predicting species distributions working group, effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Google Scholar 

  • Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, Veran S (2013) Presence-only modelling using MAXENT: when can we trust the inferences? Methods Ecol Evol 4(3):236–243

    Google Scholar 

Download references

Acknowledgments

We would like to give special thanks to Dr. Gerolamo Boffino, coordinator of the regional conservation project “Pelobate”, who helped us in many ways during this study. We would also like to thank the colleagues of the Faculty of Agriculture of the University of Torino, Gabriele Beccaro e Giancarlo Bounous for providing data on indicators of agriculture impact. We are indebted to all herpetologists who contributed to the Pelobates fuscus insubricus regional data base over time. Special thanks are due to Dominic Currie for his invaluable advice on how to improve the logical structure and effectiveness of our scientific writing and continuous encouragement. We are indebted to Emilio Balletto for a challenging critical revision of the previous draft and to Enrico Caprio for constructive criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giovannini.

Additional information

Communicated by David L. Hawksworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovannini, A., Seglie, D. & Giacoma, C. Identifying priority areas for conservation of spadefoot toad, Pelobates fuscus insubricus using a maximum entropy approach. Biodivers Conserv 23, 1427–1439 (2014). https://doi.org/10.1007/s10531-014-0674-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0674-x

Keywords

Navigation