Skip to main content
Log in

How many species of Cyanobacteria are there? Using a discovery curve to predict the species number

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Although the number of biodiversity studies is increasing, the total number of species in different taxonomic groups remains uncertain. Estimates of the number of described species of Cyanobacteria range from 2,000 to 8,000. However, no studies have used discovery curves to estimate this number. The aim of this study was to understand the status of cyanobacterial biodiversity on a global scale and to estimate the number of still-unknown species, using a discovery curve. The species and year of descriptions of Cyanobacteria were obtained from the CyanoDB database. The cumulative number of species per year was adjusted using three asymptotic models (Logistic, Gompertz, and Extreme Value). These nonlinear models were compared through the Akaike information criterion. There are currently 2,698 described species of Cyanobacteria, and the best model (Gompertz) estimated that this group must contain 6,280 species. These three models proved to be quite idiosyncratic (Extreme value: 3,166 species and Logistic: 3,769 species), and therefore the choice of model is fundamental in studies using a discovery curve. Many Cyanobacteria species remain to be described, demonstrating the importance of increasing investment in research on the biodiversity of Cyanobacteria, in particular in understudied geographic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamowicz SJ, Purvis A (2005) How many branchiopod crustacean species are there? Quantifying the components of underestimation. Glob Ecol Biogeogr 14:455–468

    Article  Google Scholar 

  • Appeltans W, Vanhoorne B, Decock W et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202

    Article  PubMed  CAS  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Aravind N, Tambat B, Ravikanth G, Ganeshaiah K, Uma Shaanker R (2007) Patterns of species discovery in the Western Ghats, a megadiversity hot spot in India. J Biosci 32:781–790

    Article  PubMed  CAS  Google Scholar 

  • Baselga A, Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM (2007) Which leaf beetles have not yet been described? Determinants of the description of Western Palaearctic Aphthona species (Coleoptera: Chrysomelidae). Biodivers Conserv 16:1409–1421

    Article  Google Scholar 

  • Bebber DP, Marriot FHC, Gaston KJ, Harris SA, Scotland RW (2007) Predicting unknown species numbers using discovery curves. Proc R Soc B 274:1651–1658

    Article  PubMed  Google Scholar 

  • Bini LM, Diniz-Filho JAF, Rangel T, Bastos RP, Pinto MP (2006) Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers Distrib 12:475–482

    Article  Google Scholar 

  • Box GEP (1979) Some problems of statistics and everyday life. JASA 74:1–4

    Google Scholar 

  • Cabrero-Sañudo FJ, Lobo JM (2003) Estimating the number of species not yet described and their characteristics: the case of Western Palaeartic dung beetle species (Coleoptera, Scarabaeoidea). Biodivers Conserv 12:147–166

    Article  Google Scholar 

  • Caliman A, Pires AF, Esteves FA, Bozelli RL, Farjalla VF (2010) The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers Conserv 19:651–664

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  PubMed  CAS  Google Scholar 

  • Carneiro FM, Nabout JC, Bini LM (2008) Trends in the scientific literature on phytoplankton. Limnology 9:153–158

    Article  Google Scholar 

  • Castenholz RW, Phylum BX (2001) Cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototropic bacteria, 2nd edn. Springer, New York, pp 473–600

    Chapter  Google Scholar 

  • Costello MJ, Wilson SP (2011) Predicting the number of known and unknown species in European seas using rates of description. Global Ecol Biogeogr 20:319–330

    Article  Google Scholar 

  • Costello MJ, Emblow CS, Picton BE (1996) Long term trends in the discovery of marine species new to science which occur in Britain and Ireland. J Mar Biol Assoc UK 76:255–257

    Article  Google Scholar 

  • Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol 61:871–883

    Article  PubMed  Google Scholar 

  • Costello MJ, May RM, Stork NE (2013a) Can we name Earth’s species before they go extinct? Science 339:413–416

    Article  PubMed  CAS  Google Scholar 

  • Costello MJ, Wilson S, Houlding B (2013b) More Taxonomists Describing Significantly Fewer Species per Unit Effort May Indicate That Most Species Have Been Discovered. Syst Biol first published online April 10, doi:10.1093/sysbio/syt024

  • De Clerck O, Guiry MD, Leliaert F, Samyn Y, Verbruggen H (2013) Algal taxonomy: A road to nowhere? J Phycol 49:215–225

    Article  Google Scholar 

  • Diamond JM (1985) How many unknown species are yet to be discovered? Nature 315:538–539

    Article  Google Scholar 

  • Diniz-Filho JAF, Bastos RP, Rangel TFLVB, Bini LM, Carvalho P, Silva RJ (2005) Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob Ecol Biogeogr 14:469–477

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TFLVB, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Ferro VG, Diniz IR (2008) Biological attributes affect the data of description of tiger moths (Arctiidae) in the Brazilian Cerrado. Divers Distrib 14:472–482

    Article  Google Scholar 

  • Fierer N, Lennon JT (2011) The generation and maintenance of diversity in microbial communities. Am J Bot 98:439–448

    Article  PubMed  Google Scholar 

  • Frank JH, Curtis GA (1979) Trend lines and the number of species of Staphylinidae. J Coleopts Bull 33:133–149

    Google Scholar 

  • Gaston KJ (1991) Body size and probability of description: the beetle fauna of Britain. Ecol Entomol 16:505–508

    Article  Google Scholar 

  • Gaston KJ, Scoble MJ, Crook A (1995) Patterns in species description: a case study using the Geometridae (Lepidoptera). Biol J Linn Soc 55:225–237

    Article  Google Scholar 

  • Gower DJ, Bhatta G, Giri V, Oommen OV, Ravichandran MS, Wilkinson M (2004) Biodiversity in the Western Ghats: The discovery of new species of caecilian amphibians. Curr Sci 87:739–740

    Google Scholar 

  • Graham LE, Graham JM, Wilcox LW (2009) Algae, 2nd edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Guil N, Cabrero-Sañudo FJ (2007) Analysis of the species description process for a little known invertebrate group: the limnoterrestrial tardigrades (Bilateria, Tardigrada). Biodivers Conserv 16:1063–1086

    Article  Google Scholar 

  • Guiry MD (2012) How many species of algae are there?. J Phycol 48(5):1057–1063

    Article  Google Scholar 

  • Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshw Biol 56:1703–1722

    Article  Google Scholar 

  • Hoffmann L (1996) Geographic distribution of freshwater blue-green algae. Hydrobiologia 336:33–39

    Article  Google Scholar 

  • Hong SH, Bunge J, Jeon SO, Epstein SS (2006) Predicting microbial species richness. Proc Nat Acad Sci USA 103(1):117–122

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Valverde A, Ortuño VM (2007) The historical description process of Iberian endemic ground-beetles (Coleoptera, Carabidae): which species are described first? Acta Oecol 31:13–31

    Article  Google Scholar 

  • Johnson JP, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Joppa L, Roberts DL, Pimm SL (2011) How many species of flowering plants are there? Proc R Soc B 278(1705):554–559

    Article  PubMed  Google Scholar 

  • Karnkowska-Ishikawa A, Milanowski R, Triemer RE, Zakryś B (2012) Taxonomic revisions of morphologically similar species from two Euglenoid genera: Euglena (E. granulata and E. velata) and Euglenaria (Eu. anabaena, Eu. caudata and Eu. clavata). J Phycol 48:729–739

    Article  Google Scholar 

  • Komárek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21(4):349–375

    Article  Google Scholar 

  • Komárek J, Hauer T (2011) CyanoDB.cz—On-line database of cyanobacterial genera. Word-wide electronic publication, Univ. of South Bohemia & Inst. of Botany AS CR. http://www.cyanodb.cz. Accessed June 2011

  • Komárek J, Mareš J (2012) An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiologia 698(1):327–351

    Article  Google Scholar 

  • Martin JW, Davis GE (2006) Historical trends in crustacean systematics. Crustaceana 79:1347–1368

    Article  Google Scholar 

  • Mauchline J, Murano M (1977) World list of the Mysidacea Crustacea. J Tokyo Univ Fish 64:39–88

    Google Scholar 

  • May R (1988) How many species are there on Earth? Science 241:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Medellín RA, Soberón J (1999) Predictions of mammal diversity on four land masses. Conserv Biol 13:143–149

    Article  Google Scholar 

  • Meier R, Dikow T (2004) The significance of specimen databases from taxonomic revisions for estimating and mapping the global species diversity of invertebrates and repatriating reliable and complete specimen data. Conserv Biol 18(2):478–488

    Article  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How Many Species Are There on Earth and in the Ocean? PLoS Biol 9(8):e1001127

    Article  PubMed  CAS  Google Scholar 

  • Motulsky, HJ, Christopoulos A (2003) Fitting Models to Biological Data Using Linear and Nonlinear Regression. A practical guide to curve fitting. GraphPad Software Inc, San Diego CA. http://www.graphpad.com. Accessed 15 November 2012

  • Nabout JC, Siqueira T, Bini LM, Nogueira IS (2009) No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecol 35:720–726

    Article  Google Scholar 

  • Nabout JC, Carvalho P, Uehara-Prado M, Borges PP, Machado KB, Haddad KB, Michelan TS, Cunha HF, Soares TN (2012) Trends and biases in global climate change literature. Nat Conserv 10:45–51

    Article  Google Scholar 

  • Paxton CGM (1998) A cumulative species description curve for large open water marine animals. J Mar Biol Assoc UK 78:1389–1391

    Article  Google Scholar 

  • Pimm S, Raven P, Peterson A, Sekercioglu CH, Ehrlich PR (2006) Human impacts on the rates of recent present and future bird extinctions. Proc Natl Acad Sci USA 103:10941–10946

    Article  PubMed  CAS  Google Scholar 

  • Ratkowsky DA (1990) Handbook of Nonlinear Regression Models. Marcel Dekker, New York

    Google Scholar 

  • Reeder DM, Helgen KM, Wilson DE (2007) Global trends and biases in new mammal species discoveries. Occas Pap Mus Texas Tech Univ 269:1–34

    Google Scholar 

  • Rejmánková E, Komárek J, Komárková J (2004) Cyanobacteria—a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Divers Distrib 10:189–199

    Article  Google Scholar 

  • Sant’Anna CL, Azevedo MTP, Agujaro LF, Carvalho MC, Carvalho LR, Souza RCR (2006) Manual ilustrado para identificação e contagem de cianobactérias planctônicas de águas continentais brasileiras, 1st edn. Editora Interciência, Rio de Janeiro

    Google Scholar 

  • Sant’Anna CL, Gama JR, Azevedo MTP, Komarek J (2011) New morphospecies of Chamaesiphon (Cyanobacteria) from Atlantic rainforest, Brazil. Fottea 11:1–6

    Google Scholar 

  • Scheffers BR, Joppa LN, Pimm SL, Laurance WF (2012) What we know and don’t know about Earth’s missing biodiversity. Trends Ecol Evol 27:501–510

    Article  PubMed  Google Scholar 

  • Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc Natl Acad Sci USA 110:1791–1796

    Article  PubMed  CAS  Google Scholar 

  • Solow AR, Smith WK (2005) On estimating the number of species from the discovery record. P Roy Soc B Biol Sci 272:285–287

    Article  Google Scholar 

  • Steyskal GC (1965) Trend curves of the rate of species description in zoology. Science 149:880–882

    Article  PubMed  CAS  Google Scholar 

  • Tjorve E (2003) Shapes and functions of species–area curves: a review of possible models. J Biogeogr 30:827–835

    Article  Google Scholar 

  • Trotta-Moreu N, Cabrero-Sañudo FJ (2010) The species description process of North and Central American Geotrupinae (Coleoptera: Scarabaeoidea: Geotrupidae). Rev Mexicana Biodivers 81:299–308

    Google Scholar 

  • Weisse T (2006) Biodiversity of freshwater microorganisms: achievements, problems and perspectives. Pol J Ecol 54(4):633–652

    Google Scholar 

  • Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Phil Trans R Soc Lond B 359:571–583

    Article  Google Scholar 

  • Whittaker RJ, Araújo MB, Paul J, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Whitton BA (2012) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, 760 p

    Book  Google Scholar 

  • Wilkins JS (2002) Summary of 26 species concepts. http://researchdata.museum.vic.gov.au/forum/wilkins_species_table.pdf. Accessed October 2012

  • Williams MR (1995) An extreme-value function model of the species incidence and species–area relations. Ecology 76:2607–2616

    Article  Google Scholar 

  • Wilson EO (2000) A Global Biodiversity Map. Science 289:2279

    CAS  Google Scholar 

  • Wilson EO (2003) The encyclopedia of life. Trends Ecol Evol 18:77–80

    Article  Google Scholar 

  • Wilson EO (2004) Taxonomy as a fundamental discipline. Phil Trans R Soc Lond B 359:739

    Article  Google Scholar 

  • Wilson SP, Costello MJ (2005) Predicting future discoveries of European marine species using non-homogenous renewal process. App Stat 54:897–918

    Google Scholar 

  • Woolhouse MEJ, Howey R, Gaunt E, Reilly L, Chase-Topping M, Savill NT (2008) Temporal trends in the discovery of human viruses. Proc Biol Sci 275:2111–2115

    Article  PubMed  Google Scholar 

  • Zapata FA, Robertson DR (2007) How many species of shore fishes are there in the Tropical Eastern Pacific? J Biogeogr 34:38–51

    Article  Google Scholar 

Download references

Acknowledgments

BSR received a scholarship from CNPq (ATP-B). Our work on phycology has been continuously supported by different grants from CNPp (process 563834/2010-2), CAPES, FAPEG (011/2012) and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Carlos Nabout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabout, J.C., da Silva Rocha, B., Carneiro, F.M. et al. How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodivers Conserv 22, 2907–2918 (2013). https://doi.org/10.1007/s10531-013-0561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0561-x

Keywords

Navigation