Skip to main content
Log in

Naïve, bold, or just hungry? An invasive exotic prey species recognises but does not respond to its predators

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Alien species experience both costs and benefits in invaded environments, through naiveté of potential prey species, but also predation pressure from native predators. The question of whether alien prey recognise and respond to native predators has been relatively understudied, despite the hypothesised potential for native predators to provide biotic resistance to invasion. There are two main hypotheses about whether exotic prey should recognise native and exotic predators in their new ranges: (1) naiveté—predicting recognition of evolutionarily familiar predators only, and (2) pre-adaptation—predicting recognition of all predators through a generalist recognition template. With regards to antipredator responses, (3) naïveté theory presumes that exotic prey will respond to the predators they recognise, but we suggest that (4) a bold behavioural syndrome, and/or a high marginal value of food in invaded environments might result in weak or absent responses, even to recognised predators. Here we combine the giving-up density framework with behavioural analysis of remote camera footage to experimentally test these ideas in a disturbed, peri-urban, Australian ecosystem, where alien black rats are predated on by alien dogs, foxes, cats, and native quolls. Black rats recognised dogs and foxes, but appear naïve towards quolls. However, they showed no antipredator responses at all, consistent with a bold behavioural syndrome, elevated predation risk, and/or a high marginal value of food in invaded environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325–383

    Article  Google Scholar 

  • Apfelbach R, Blanchard CD, Blanchard RJ et al (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144

    Article  PubMed  Google Scholar 

  • Apfelbach R, Parsons MH, Soini HA et al (2015) Are single odorous components of a predator sufficient to elicit defensive behaviors in prey species? Front Neurosci 9:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Atlas of Living Australia (2017) Atlas of living Australia website at http://www.ala.org.au. In. http://www.ala.org.au. Accessed 10 Oct 2017

  • Banks PB (2001) Predation-sensitive grouping and habitat use by eastern grey kangaroos: a field experiment. Anim Behav 61:1013–1021

    Article  Google Scholar 

  • Banks PB, Dickman CR (2007) Alien predation and the effects of multiple levels of prey naivete. Trends Ecol Evol 22:229–230

    Article  PubMed  Google Scholar 

  • Banks PB, Hughes NK (2012) A review of the evidence for potential impacts of black rats (Rattus rattus) on wildlife and humans in Australia. Wildl Res 39:78–88

    Article  Google Scholar 

  • Banks PB, Smith HM (2015) The ecological impacts of commensal species: black rats, Rattus rattus, at the urban-bushland interface. Wildl Res 42:86–97

    Article  Google Scholar 

  • Barrio IC, Bueno CG, Banks PB et al (2010) Prey naivete in an introduced prey species: the wild rabbit in Australia. Behav Ecol 21:986–991

    Article  Google Scholar 

  • Bedoya-Perez MA, Carthey AJ, Mella VS et al (2013) A practical guide to avoid giving up on giving-up densities. Behav Ecol Sociobiol 67:1541–1553

    Article  Google Scholar 

  • Blackburn TM, Cassey P, Duncan RP et al (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958

    Article  CAS  PubMed  Google Scholar 

  • Blanchard DC, Blanchard RJ (2004) Antipredator defense. In: Whishaw IQ, Kolb (eds) The behavior of the laboratory rat. Oxford University Press, Oxford, pp 335–343

    Chapter  Google Scholar 

  • Blight O, Josens R, Bertelsmeier C et al (2017) Differences in behavioural traits among native and introduced colonies of an invasive ant. Biol Invasions 19:1389–1398

    Article  Google Scholar 

  • Blumstein DT, Daniel JC (2007) Quantifying behavior the JWatcher Way. Sinauer Associates Incorporated, Sunderland

    Google Scholar 

  • Blumstein DT, Daniel JC, Evans C (2006) JWatcher

  • Bramley GN, Waas JR (2001) Laboratory and field evaluation of predator odors as repellents for kiore (Rattus exulans) and ship rats (R. rattus). J Chem Ecol 27:1029–1047

    Article  CAS  PubMed  Google Scholar 

  • Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47

    Article  Google Scholar 

  • Brown JS (1999) Vigilance, patch use and habitat selection: foraging under predation risk. Evol Ecol Res 1:49–71

    Google Scholar 

  • Brown GE, Ferrari MCO, Elvidge CK et al (2013) Phenotypically plastic neophobia: a response to variable predation risk. Proc R Soc B Biol Sci 280:20122712

    Article  Google Scholar 

  • Burwash MD, Tobin ME, Woolhouse AD et al (1998) Laboratory evaluation of predator odors for eliciting an avoidance response in roof rats (Rattus rattus). J Chem Ecol 24:49–66

    Article  CAS  Google Scholar 

  • Bytheway JP, Carthey AJR, Banks PB (2013) Risk vs. reward: how predators and prey respond to aging olfactory cues. Behav Ecol Sociobiol 67:715–725

    Article  Google Scholar 

  • Bytheway JP, Price CJ, Banks PB (2016) Deadly intentions: naive introduced foxes show rapid attraction to odour cues of an unfamiliar native prey. Sci Rep 6:30078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capelle PM, McCallum ES, Balshine S (2015) Aggression and sociality: conflicting or complementary traits of a successful invader? Behaviour 152:127–146

    Article  Google Scholar 

  • Carlsson NOL, Strayer DL (2009) Intraspecific variation in the consumption of exotic prey—a mechanism that increases biotic resistance against invasive species? Freshw Biol 54:2315–2319

    Article  Google Scholar 

  • Carlsson NOL, Sarnelle O, Strayer DL (2009) Native predators and exotic prey—an acquired taste? Front Ecol Environ 7:525–532

    Article  Google Scholar 

  • Carlsson NOL, Bustamante H, Strayer DL et al (2011) Biotic resistance on the increase: native predators structure invasive zebra mussel populations. Freshw Biol 56:1630–1637

    Article  Google Scholar 

  • Caro T (2005) Antipredator defenses in birds and mammals. The University of Chicago Press, Chicago

    Google Scholar 

  • Carthey AJR (2013) Naivete, novelty and native status: mismatched ecological interactions in the Australian environment. University of Sydney, Sydney

    Google Scholar 

  • Carthey AJR, Banks PB (2014) Naiveté in novel ecological interactions: lessons from theory and experimental evidence. Biol Rev 89:932–949

    Article  PubMed  Google Scholar 

  • Carthey AJR, Banks PB (2015) Foraging in groups affects giving-up densities: solo foragers quit sooner. Oecologia 178:707–713

    Article  PubMed  Google Scholar 

  • Carthey AJR, Banks PB (2016) Naiveté is not forever: responses of a vulnerable native rodent to its long term alien predators. Oikos 125:918–926

    Article  Google Scholar 

  • Carthey AJ, Blumstein DT (2018) Predicting predator recognition in a changing world. Trends Ecol Evol 33:106–115

    Article  PubMed  Google Scholar 

  • Chapple DG, Simmonds SM, Wong BBM (2012) Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol Evol 27:57–64

    Article  PubMed  Google Scholar 

  • Coleman JTH, Adams CM, Kandel M et al (2012) Eating the invaders: the prevalence of round goby (Apollonia melanostomus) in the diet of double-crested cormorants on the Niagara River. Waterbirds 35:103–113

    Article  Google Scholar 

  • Cox JG, Lima SL (2006) Naivete and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol Evol 21:674–680

    Article  PubMed  Google Scholar 

  • Cox MP, Cox CRD, Warren G (2000) Use of habitat by the black rat (Rattus rattus) at North Head, New South Wales: an observational and experimental study. Aust Ecol 25:375–385

    Article  Google Scholar 

  • Dawson JP, Claridge AW, Triggs B et al (2007) Diet of a native carnivore, the spotted-tailed quoll (Dasyurus maculatus), before and after an intense wildfire. Wildl Res 34:342–351

    Article  Google Scholar 

  • Diamond J, Case TJ (1986) Overview: introductions, extinctions, exterminations, and invasions. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row, New York, pp 65–79

    Google Scholar 

  • Doherty TS, Glen AS, Nimmo DG et al (2016) Invasive predators and global biodiversity loss. Proc Natl Acad Sci 113:11261–11265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Endler JA (1991) Interactions between predators and prey. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, 3rd edn. Blackwell Scientific Publications, Oxford, pp 169–202

    Google Scholar 

  • Epple G, Mason JR, Nolte DL et al (1993) Effects of predator odors on feeding in the mountain beaver (Aplodontia rufa). J Mammal 74:715–722

    Article  Google Scholar 

  • Feral Scan (2017) Fox scan—https://www.feralscan.org.au/foxscan/. In: Vertebrate Pest Research Unit, Industry & Investment NSW. https://www.feralscan.org.au/foxscan/. Accessed 10 Oct 2017

  • Ferrari MCO, Sih A, Chivers DP (2009) The paradox of risk allocation: a review and prospectus. Anim Behav 78:579–585

    Article  Google Scholar 

  • Fuiman LA, Magurran AE (1994) Development of predator defences in fishes. Rev Fish Biol Fish 4:145–183

    Article  Google Scholar 

  • Gheusi G, Goodall G, Dantzer R (1997) Individually distinctive odours represent individual conspecifics in rats. Anim Behav 53:935–944

    Article  Google Scholar 

  • Gheusi G, Cremer H, McLean H et al (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci 97:1823–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glen A, Fay A, Dickman C (2006) Diets of sympatric red foxes Vulpes vulpes and wild dogs Canis lupus in the Northern Rivers Region, New South Wales. Aust Mammal 28:101–104

    Article  Google Scholar 

  • Glen AS, Dickman CR, Soule ME et al (2007) Evaluating the role of the dingo as a trophic regulator in Australian ecosystems. Aust Ecol 32:492–501

    Article  Google Scholar 

  • Głowaciński Z, Profus P (1997) Potential impact of wolves Canis lupus on prey populations in eastern Poland. Biol Conserv 80:99–106

    Article  Google Scholar 

  • Goldyn B, Hromada M, Surmacki A et al (2003) Habitat use and diet of the red fox Vulpes vulpes in an agricultural landscape in Poland. Zeitschrift für Jagdwissenschaft 49:191–200

    Google Scholar 

  • Greggor AL, Clayton NS, Fulford AJC et al (2016) Street smart: faster approach towards litter in urban areas by highly neophobic corvids and less fearful birds. Anim Behav 117:123–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311

    Article  CAS  PubMed  Google Scholar 

  • Heavener SJ, Carthey AJR, Banks PB (2014) Competitive naivete, between a highly successful invader and a functionally similar native species. Oecologia 175:73–84

    Article  PubMed  Google Scholar 

  • Holway DA, Suarez AV (1999) Animal behavior: an essential component of invasion biology. Trends Ecol Evol 14:328–330

    Article  CAS  PubMed  Google Scholar 

  • Hudina S, Hock K, žganec K (2014) The role of aggression in range expansion and biological invasions. Curr Zool 60:401–409

    Article  Google Scholar 

  • Hurst JL, Payne CE, Nevison CM et al (2001) Individual recognition in mice mediated by major urinary proteins. Nature 414:631–634

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, Brown JS (2000) Microhabitat use, giving-up densities and temporal activity as short- and long-term anti-predator behaviors in common voles. Oikos 91:131–138

    Article  Google Scholar 

  • Jones E, Coman BJ (1981) Ecology of the feral cat, Felis catus (L.), in southeastern Australia. 1. Diet. Aust Wildl Res 8:537–547

    Article  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394

    Article  Google Scholar 

  • Kemble ED, Bolwahnn BL (1997) Immediate and long-term effects of novel odors on risk assessment in mice. Physiol Behav 61:543–549

    Article  CAS  PubMed  Google Scholar 

  • Kepecs A, Uchida N, Mainen ZF (2006) The sniff as a unit of olfactory processing. Chem Senses 31:167–179

    Article  PubMed  Google Scholar 

  • King RB, Ray JM, Stanford KM (2006) Gorging on gobies: beneficial effects of alien prey on a threatened vertebrate. Can J Zool 84:108–115

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Letnic M, Dworjanyn SA (2011) Does a top predator reduce the predatory impact of an invasive mesopredator on an endangered rodent? Ecography 34:827–835

    Article  Google Scholar 

  • Lima SL, Bednekoff PA (1999) Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am Nat 153:649–659

    Article  PubMed  Google Scholar 

  • Linklater WL, Mayer K, Swaisgood RR (2013) Chemical signals of age, sex and identity in black rhinoceros. Anim Behav 85:671–677

    Article  Google Scholar 

  • Long JL (2003) Introduced mammals of the world: their history, distribution and influence. CSIRO Publishing, Melbourne

    Google Scholar 

  • Mallick S (1992) Urine-marking in three species of Rattus. Wildl Res 19:89–93

    Article  Google Scholar 

  • Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373

    Article  Google Scholar 

  • Martin LB, Fitzgerald L (2005) A taste for novelty in invading house sparrows, Passer domesticus. Behav Ecol 16:702–707

    Article  Google Scholar 

  • Martin GR, Twigg LE, Robinson DJ (1996) Comparison of the diet of feral cats from rural and pastoral Western Australia. Wildl Res 23:475–484

    Article  Google Scholar 

  • Masini CV, Sauer S, Campeau S (2005) Ferret odor as a processive stress model in rats: neurochernical, behavioral, and endocrine evidence. Behav Neurosci 119:280–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleery RA (2009) Changes in fox squirrel anti-predator behaviors across the urban-rural gradient. Landsc Ecol 24:483–493

    Article  Google Scholar 

  • Molsher RL, Gifford EJ, McIlroy JC (2000) Temporal, spatial and individual variation in the diet of red foxes (Vulpes vulpes) in central New South Wales. Wildl Res 27:593–601

    Article  Google Scholar 

  • Moseby KE, Neilly H, Read JL et al (2012) Interactions between a top order predator and exotic mesopredators in the Australian rangelands. Int J Ecol 2012:15

    Article  Google Scholar 

  • Myles-Gonzalez E, Burness G, Yavno S et al (2015) To boldly go where no goby has gone before: boldness, dispersal tendency, and metabolism at the invasion front. Behav Ecol 26:1083–1090

    Article  Google Scholar 

  • Nelson DWM, Crossland MR, Shine R (2011) Behavioural responses of native predators to an invasive toxic prey species. Aust Ecol 36:605–611

    Google Scholar 

  • Nolte DL, Mason JR, Epple G et al (1994) Why are predator urines aversive to prey. J Chem Ecol 20:1505–1516

    Article  CAS  PubMed  Google Scholar 

  • Orrock JL, Danielson BJ, Brinkerhoff RJ (2004) Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav Ecol 15:433–437

    Article  Google Scholar 

  • Overington SE, Griffin AS, Sol D et al (2011) Are innovative species ecological generalists? A test in North American birds. Behav Ecol 22:1286–1293

    Article  Google Scholar 

  • Parsons MH, Blumstein DT (2010) Familiarity breeds contempt: Kangaroos persistently avoid areas with experimentally deployed dingo scents. PLoS ONE 5:e10403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons MH, Apfelbach R, Banks PB et al (2017) Biologically meaningful scents: a framework for understanding predator–prey research across disciplines. Biol Rev 93:98–114

    Article  PubMed  Google Scholar 

  • Phillips BL, Shine R (2006) An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proc R Soc B Biol Sci 273:1545–1550

    Article  Google Scholar 

  • Phillips BL, Shine R, Wake DB (2004) Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc Natl Acad Sci USA 101:17150–17155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintor LM, Sih A, Bauer ML (2008) Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish. Oikos 117:1629–1636

    Article  Google Scholar 

  • Pintor LM, Sih A, Kerby JL (2009) Behavioral correlations provide a mechanism for explaining high invader densities and increased impacts on native prey. Ecology 90:581–587

    Article  PubMed  Google Scholar 

  • Primer-E Ltd. (2012) Primer-E v.6 and PERMANOVA+. Primer-E Ltd, Plymouth

    Google Scholar 

  • Pujol-Buxo E, Garcia-Guerrero C, Llorente GA (2017) Alien versus predators: effective induced defenses of an invasive frog in response to native predators. J Zool 301:227–234

    Article  Google Scholar 

  • Pulliam HR (1973) On the advantages of flocking. J Theor Biol 38:419–422

    Article  CAS  PubMed  Google Scholar 

  • Pulliam HR, Caraco T (1984) Living in groups: is there an optimal group size? Behavioural ecology: an evolutionary approach. Blackwell Science, Oxford, pp 122–147

    Google Scholar 

  • Randall JA, Hatch SM, Hekkala ER (1995) Interspecific variation in antipredator behavior in sympatric species of kangaroo rat. Behav Ecol Sociobiol 36:243–250

    Article  Google Scholar 

  • Rehage JS, Barnett BK, Sih A (2005) Foraging behaviour and invasiveness: do invasive Gambusia exhibit higher feeding rates and broader diets than their noninvasive relatives? Ecol Freshw Fish 14:352–360

    Article  Google Scholar 

  • Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:982–998

    Article  PubMed  Google Scholar 

  • Roberts SC (2007) Scent marking. In: Wolff JO, Sherman PW (eds) Rodent societies: an ecological and evolutionary perspective. University of Chicago Press, Chicago, pp 255–266

    Google Scholar 

  • Roberts MW, Dexter N, Meek PD et al (2006) Does baiting influence the relative composition of the diet of foxes? Wildl Res 33:481–488

    Article  Google Scholar 

  • Salo P, Nordstrom M, Thomson RL et al (2008) Risk induced by a native top predator reduces alien mink movements. J Anim Ecol 77:1092–1098

    Article  PubMed  Google Scholar 

  • SAS Institute Inc. (1989–2007) JMP. SAS Institute Inc., Cary, NC,

  • Saul W-C, Jeschke JM (2015) Eco-evolutionary experience in novel species interactions. Ecol Lett 18:236–245

    Article  PubMed  Google Scholar 

  • Saul W-C, Jeschke J, Heger T (2013) The role of eco-evolutionary experience in invasion success. NeoBiota 17:57

    Article  Google Scholar 

  • Sherman PW, Reeve HK, Pfennig DW (1997) Recognition systems. In: Krebs JR, Davies NB (eds) Behavioural ecology, 4th edn. Blackwell Science, Oxford, p 456

    Google Scholar 

  • Shochat E, Warren PS, Faeth SH et al (2006) From patterns to emerging processes in mechanistic urban ecology. Trends Ecol Evol 21:186–191

    Article  PubMed  Google Scholar 

  • Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Slotnick B (2001) Animal cognition and the rat olfactory system. Trends Cognit Sci 5:216–222

    Article  CAS  Google Scholar 

  • Sol D, Timmermans S, Lefebvre L (2002) Behavioural flexibility and invasion success in birds. Anim Behav 63:495–502

    Article  Google Scholar 

  • Sol D, Lapiedra O, González-Lagos C (2013) Behavioural adjustments for a life in the city. Anim Behav 85:1101–1112

    Article  Google Scholar 

  • Stokes VL, Banks PB, Pech RP et al (2009) Competition in an invaded rodent community reveals black rats as a threat to native bush rats in littoral rainforest of south-eastern Australia. J Appl Ecol 46:1239–1247

    Article  Google Scholar 

  • Stokes VL, Banks PB, Pech R (2012) Influence of residency and social odors in interactions between competing native and alien rodents. Behav Ecol Sociobiol 66:329–338

    Article  Google Scholar 

  • Wanger TC, Wielgoss AC, Motzke I et al (2011) Endemic predators, invasive prey and native diversity. Proc R Soc B Biol Sci 278:690–694

    Article  Google Scholar 

  • Webb JK, Brown GP, Child T et al (2008) A native dasyurid predator (common planigale, Planigale maculata) rapidly learns to avoid a toxic invader. Aust Ecol 33:821–829

    Article  Google Scholar 

  • Weerakoon MK, Ruffino L, Cleary GP et al (2014) Can camera traps be used to estimate small mammal population size. Camera Trapping: wildlife management and research. CSIRO Publishing, Clayton, pp 307–316

    Google Scholar 

  • Zangrossi H, File SE (1994) Habituation and generalization of phobic responses to cat odor. Brain Res Bull 33:189–194

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Malith Weerakoon, Timothy Ralph, and a long list of volunteers for assistance with odour sample donation, field work, and video scoring. We would also like to thank the editor and one anonymous reviewer for their comments and suggestions, which greatly improved the manuscript.

Funding

AJRC was funded by an Ethel Mary Read Grant from the Royal Zoological Society of New South Wales, and a Joyce W Vickery Fund Research Grant from the Linnean Society of New South Wales. AJRC and PBB were funded by a Hermon Slade Foundation grant, HSF 10/10.

Author information

Authors and Affiliations

Authors

Contributions

AJRC and PBB conceived of and designed the study, AJRC completed the fieldwork, analyses, and wrote the first draft of the manuscript. PBB contributed to the data analysis and editing of the manuscript.

Corresponding author

Correspondence to Alexandra J. R. Carthey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This work was carried out under Australian ethics approval, granted by the University of New South Wales Animal Ethics Committee (approval number 09/99B).

Data

All data will be deposited in Dryad upon acceptance.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carthey, A.J.R., Banks, P.B. Naïve, bold, or just hungry? An invasive exotic prey species recognises but does not respond to its predators. Biol Invasions 20, 3417–3429 (2018). https://doi.org/10.1007/s10530-018-1782-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1782-4

Keywords

Navigation