Skip to main content

Advertisement

Log in

Ecology and management of invasive Pinaceae around the world: progress and challenges

  • Forest Invasions
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Many species in the family Pinaceae are invaders. These species are relatively easy to control because of some of their intrinsic characteristics and because they are highly visible and easy to eliminate. Many Pinaceae species have been well studied because of their use in forestry and their invasive behavior in many countries. The impacts of invasive Pinaceae are not only ecological, but also economic and social. We review the ecology and management of Pinaceae invasions and explore how restoration of invaded areas should be addressed. There are many ways to prevent invasions and to deal with them. Planting less invasive species, better site selection, and invasion monitoring are used successfully in different parts of the world to prevent invasion. Mechanical and chemical methods are used effectively to control Pinaceae invasions. Control is more effective at the early stages of invasion. Old invasions are more problematic as their elimination is more expensive, and the restoration of native vegetation is challenging. In some areas, native vegetation cannot thrive after Pinaceae have been removed, and weeds colonize cleared areas. More attention is needed to prevent the initiation and spread of invasions by focusing control interventions at early stages of invasion. Finding new ways of dealing sustainably with conflicts of interest between foresters and conservationists is crucial. Non-native Pinaceae are important parts of the economies and landscapes in several countries and they will continue to play such a role in the future. Despite the numerous challenges facing Pinaceae invasion management, several approaches can be successful at controlling them. Proper application of current techniques and development of more efficient ones is needed if the goal of maximizing benefits and minimizing negative impacts is to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Lovett et al. (2016)

Similar content being viewed by others

References

  • Adamowski W (2004) Why don’t alien conifers invade the Bialowieza Forest? Weed Technol 18:1453–1456

    Article  Google Scholar 

  • Anon (2014a) New Zealand wilding conifer management strategy. A non-regulatory strategy for the management of wilding conifers in New Zealand. Ministry of Primary Industry of New Zealand, 40 pp

  • Anon (2014b) National exotic forest description. Ministry of Primary Industries, Wellington

    Google Scholar 

  • Araujo PI, Austin AT (2015) A shady business: pine afforestation alters the primary controls on litter decomposition along a precipitation gradient in Patagonia, Argentina. J Ecol 103:1408–1420

    Article  CAS  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354

    Article  PubMed  Google Scholar 

  • Becerra PI, Bustamante RO (2008) The effect of herbivory on seedling survival of the invasive exotic species Pinus radiata and Eucalyptus globulus in a Mediterranean ecosystem of Central Chile. For Ecol Manag 256:1573–1578

    Article  Google Scholar 

  • Becerra PI, Montenegro G (2013) The widely invasive tree Pinus radiata facilitates regeneration of native woody species in a semi-arid ecosystem. Appl Veg Sci 16:173–183

    Article  Google Scholar 

  • Benecke U (1967) The weed potential of lodgepole pine. Tussock Grassl Mt Lands Inst Rev 13:36–42

    Google Scholar 

  • Bohrer G, Katul GG, Nathan R, Walko RL, Avissar R (2008) Effects of canopy heterogeneity, seed abscission and inertia on wind-driven dispersal kernels of tree seeds. J Ecol 96:569–580

    Article  Google Scholar 

  • Briden K, Raal P, Gous S (2014) Improving methods for wilding conifer control in New Zealand. In: Proceedings of nineteenth Australian weeds conference, Hobart, Tasmania, Australia, pp 369–371. http://caws.org.au/awc/2014/awc201413691.pdf. Accessed Sept 2016

  • Brockerhoff EG, Ecroyd CE, Leckie AC, Kimberley MO (2003) Diversity and succession of adventive and indigenous vascular understorey plants in Pinus radiata plantation forests in New Zealand. For Ecol Manag 185:307–326

    Article  Google Scholar 

  • Brockerhoff EG, Dick M, Ganley R, Roques A, Storer AJ (2016) Role of insect vectors in epidemiology and invasion risk of Fusarium circinatum, and risk assessment of biological control of invasive Pinus contorta. Biol Invasions 18:1177–1190

    Article  Google Scholar 

  • Brundu G, Richardson DM (2016) Planted forests and invasive alien trees in Europe: a code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota 30:5–47

    Article  Google Scholar 

  • Buckley YM, Brockerhoff E, Langer L, Ledgard N, North H, Rees M (2005) Slowing down a pine invasion despite uncertainty in demography and dispersal. J Appl Ecol 42:1020–1030

    Article  Google Scholar 

  • Buckley YM, Anderson S, Catterall CP, Corlett RT, Engel T, Gosper CR, Nathan R, Richardson DM, Setter M, Spiegel O, Vivian-Smith G, Voigt FA, Weir JES, Westcott DA (2006) Management of plant invasions mediated by frugivore interactions. J Appl Ecol 43:848–857

    Article  Google Scholar 

  • Burns RM, Honkala BH (1990) Silvics of North America. Agriculture handbook 654, vol 1. United States Department of Agriculture, Forest Service, Washington

    Google Scholar 

  • Caccia FD, Ballaré CL (1998) Effects of tree cover, understory vegetation, and litter on regeneration of Douglas-fir (Pseudotsuga menziesii) in southwestern Argentina. Can J For Res 28:683–692

    Article  Google Scholar 

  • Carrillo-Gavilán MA, Vilà M (2010) Little evidence of invasion by alien conifers in Europe. Divers Distrib 16:203–213

    Article  Google Scholar 

  • Chauchard L, Frugoni MC, Nowak C (2015) Buenas prácticas para el manejo de plantaciones forestales en el noroeste de la Patagonia. Ministerio de Agroindustria Argentina

  • Crous CJ, Burgess TI, Le Roux JJ, Richardson DM, Slippers B, Wingfield MJ (2016) Ecological disequilibrium driving insect pest and pathogen accumulation in non-native trees in South Africa. AoB Plants 9:plw081. doi:10.1093/aobpla/plw081

    Article  PubMed Central  Google Scholar 

  • Cuddington K (2011) Legacy effects: the persistent impact of ecological interactions. Biol Theory 6:203–210

    Article  Google Scholar 

  • Cuevas YA, Zalba SM (2010) Recovery of native grasslands after removing invasive pines. Restor Ecol 18:711–719

    Article  Google Scholar 

  • Davis M, Grace L, Horrell R (1996) Conifer establishment in the South Island high country: influence of mycorrhizal inoculation, competition removal, fertilizer application, and animal exclusion during seedling establishment. N Z J For Sci 26:380–394

    Google Scholar 

  • Dehlin H, Peltzer DA, Allison VJ, Yeates GW, Nilsson MC, Wardle DA (2008) Tree seedling performance and below-ground properties in stands of invasive and native tree species. N Z J Ecol 32:67–79

    Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255

    Article  Google Scholar 

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484

    Article  PubMed  Google Scholar 

  • Dickie IA, Yeates GW et al (2011) Ecosystem service and biodiversity trade-offs in two woody successions. J Appl Ecol 48:926–934

    Article  Google Scholar 

  • Dickie IA, Bennett BM, Burrows LE, Nunez MA, Peltzer DA, Porté A, Richardson DM, Rejmánek M, Rundel PW, van Wilgen BW (2014a) Conflicting values: ecosystem services and invasive tree management. Biol Invasions 16:705–719

    Article  Google Scholar 

  • Dickie IA, St John MG, Yeates GW, Morse CW, Bonner KI, Orwin K, Peltzer DA (2014b) Belowground legacies of Pinus contorta invasion and removal result in multiple mechanisms of invasional meltdown. AoB Plants 6:plu056

    Article  PubMed  CAS  Google Scholar 

  • Dickie IA, Nuñez MA, Pringle A, Lebel T, Tourtellot SG, Johnston PR (2016) Towards management of invasive ectomycorrhizal fungi. Biol Invasions 18:3383–3395

    Article  Google Scholar 

  • Engelmark O, Sjöberg K, Andersson B, Rosvall O, Ågren GI, Baker WL et al (2001) Ecological effects and management aspects of an exotic tree species: the case of lodgepole pine in Sweden. For Ecol Manag 141:3–13

    Article  Google Scholar 

  • Essl F, Moser D, Dullinger S, Mang T, Hulme P (2010) Selection for commercial forestry determines global patterns of alien conifer invasions. Biodivers Res 16:911–921

    Google Scholar 

  • Essl F, Mang T, Dullinger S, Moser D, Hulme PE (2011) Macroecological drivers of alien conifer naturalizations worldwide. Ecography 34:1076–1084

    Article  Google Scholar 

  • Gaertner M, Holmes PM, Richardson DM (2012) Biological invasions, resilience and restoration. In: van Andel J, Aronson J (eds) Restoration ecology—the new frontier. Wiley-Blackwell, Oxford, pp 265–280

    Chapter  Google Scholar 

  • García RA, Engler ML, Pollnac F, Pauchard A (2015) Fuel characteristics of the invasive Teline monspessulana (L.) K. Koch. Int J Wildland Fire 24:372–379

    Article  Google Scholar 

  • Giorgis MA, Tecco PA (2014) Árboles y arbustos invasores de la Provincia de Córdoba (Argentina): una contribución a la sistematización de bases de datos globales. Bol Soc Argent Bot 49:581–603

    Google Scholar 

  • Gómez P, Bustamente R, San Martín J, Hahn S (2011) Estructura poblacional de Pinus radiata D. Don en fragmentos de Bosque Maulion en Chile central. Gayana Botánica 68:97–101

    Article  Google Scholar 

  • Gous S, Raal P, Watt MS (2014) Dense wilding conifer control with aerially applied herbicides in New Zealand. N Z J For Sci 44:4

    Article  Google Scholar 

  • Gous S, Raal P, Kimberley MO, Watt MS (2015) Chemical control of isolated invasive conifers using a novel aerial spot application method. Weed Res 55:380–386

    Article  Google Scholar 

  • Greenaway A, Bayne K et al (2015) Evaluating (non-market) impacts of wilding conifers on cultural values. Landcare Research Scion, Auckland

    Google Scholar 

  • Greene DF, Kneeshaw DD, Messier C, Lieffers V, Cormier D, Doucet R et al (2002) Modelling silvicultural alternatives for conifer regeneration in boreal mixedwood stands (aspen/white spruce/balsam fir). For Chron 78:281–295

    Article  Google Scholar 

  • Grotkopp E, Rejmánek M, Rost TL (2002) Toward a causal explanation of plant invasiveness: seedling growth and life history strategies of 29 pine (Pinus) species. Am Nat 159:396–419

    PubMed  Google Scholar 

  • Gundale MJ, Pauchard A, Langdon B, Peltzer DA, Maxwell BD, Nuñez MA (2014) Can model species be used to advance the field of invasion ecology? Biol Invasions 16:591–607

    Article  Google Scholar 

  • Gundale MJ, Almeida JP, Wallander H, Wardle DA, Kardol P, Nilsson MC, Fajardo A, Pauchard A, Peltzer DA, Ruotsalainen S, Mason B (2016) Differences in endophyte communities of introduced trees depend on the phylogenetic relatedness of the receiving forest. J Ecol 104:1219–1232

    Article  Google Scholar 

  • Halpern CB, Haugo RD, Antos JA, Kaas SS, Kilanowski AL (2012) Grassland restoration with and without fire: evidence from a tree-removal experiment. Ecol Appl 22:425–441

    Article  PubMed  Google Scholar 

  • Halpern CB, Antos JA, Beckman LM (2014) Vegetation recovery in slash-pile scars following conifer removal in a grassland-restoration experiment. Restor Ecol 22:731–740

    Article  Google Scholar 

  • Hayward J, Horton TR, Nuñez MA (2015a) Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: gringos bajo el bosque. New Phytol 208:497–506

    Article  PubMed  Google Scholar 

  • Hayward J, Horton TR, Pauchard A, Nuñez MA (2015b) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96:1438–1444

    Article  PubMed  Google Scholar 

  • Hermann RK, Lavender DP (1990) Pseudotsuga menziesii (Mirb.) Franco Douglas-Fir. In: Burns RM, Honkala BH (eds) Silvics of North America. United States Department of Agriculture, Forest Service, Washington, pp 778–806

    Google Scholar 

  • Higgins SI, Richardson DM (1998) Pine invasions in the southern hemisphere: modeling interactions between organism, environment and disturbance. Plant Ecol 135:79–93

    Article  Google Scholar 

  • Hoffmann JH, Moran VC, van Wilgen BW (2011) Prospects for the biological control of invasive Pinus species (Pinaceae) in South Africa. Afr Entomol 19:393–401

    Article  Google Scholar 

  • Holmes PM, Richardson DM (1999) Protocols for restoration based on recruitment dynamics, community structure, and ecosystem function: perspectives from South African fynbos. Restor Ecol 7:215–230

    Article  Google Scholar 

  • Holmes PM, Richardson DM, van Wilgen BW, Gelderblom C (2000) Recovery of South African fynbos vegetation following alien woody plant clearing and fire: implications for restoration. Austral Ecol 25:631–639

    Article  Google Scholar 

  • Hourdequin ME (1999) Ecological restoration after removal of exotic conifer plantations in Argentine Patagonia’s Nahuel Huapi National Park. Dissertation, University of Montana

  • Howell CJ, McAlpine KG (2016) Native plant species richness in non-native Pinus contorta forest. N Z J Ecol 40:131–136

    Article  Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 4:835–847

    Article  Google Scholar 

  • Hulme PE (2012) Weed risk assessment: a way forward or a waste of time? J Appl Ecol 49:10–19

    Article  Google Scholar 

  • Hunter GG, Douglas MH (1984) Spread of exotic conifers on South Island Rangelands. N Z J For 29:78–96

    Google Scholar 

  • Kasel S, Meers T (2004) Restoration of former pine plantation in Australia: revegetation techniques, pine wilding control and the importance of land use history. In: Int’l conference, society for ecological restoration, Victoria, Canada

  • Kettenring KM, Adams CR (2011) Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J Appl Ecol 48:970–979

    Article  Google Scholar 

  • Kremer NJ, Halpern CB, Antos JA (2014) Conifer reinvasion of montane meadows following experimental tree removal and prescribed burning. For Ecol Manag 319:128–137

    Article  Google Scholar 

  • Krumm F, Vítková L (2016) Introduced tree species to European forests: challenges and opportunities. European Forest Institute, Bonn. ISBN 978-952-5980-31-8

    Google Scholar 

  • Kuebbing SE, Nuñez MA (2015) Negative, neutral, and positive interactions among nonnative plants: patterns, processes, and management implications. Glob Chang Biol 21:926–934

    Article  PubMed  Google Scholar 

  • Kueffer C, Pyšek P, Richardson DM (2013) Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol 200:615–633

    Article  PubMed  Google Scholar 

  • Langdon B, Pauchard A, Aguayo M (2010) Pinus contorta invasion in the Chilean Patagonia: local patterns in a global context. Biol Invasions 12:3961–3971

    Article  Google Scholar 

  • Le Maitre DC, van Wilgen BW, Gelderblom CM, Bailey C, Chapman RA, Nel JA (2002) Invasive alien trees and water resources in South Africa: case studies of the costs and benefits of management. For Ecol Manag 160:143–159

    Article  Google Scholar 

  • Ledgard NJ (2001) The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand. For Ecol Manag 141:43–57

    Article  Google Scholar 

  • Ledgard NJ (2002) The spread of Douglas-fir into native forests. N Z J For 47:36–38

    Google Scholar 

  • Ledgard NJ (2004) Wilding conifers-New Zealand history and research background. In: Managing wilding conifers in New Zealand-present and future. Proceedings of a workshop held in conjunction with the annual general meeting of the NZ Plant Protection Society, Christchurch, pp 1–25

  • Ledgard NJ (2009a) Wilding control. Guidelines for the control of wilding conifers. Scion, Rotorua. ISBN 0-478-11028-6

    Google Scholar 

  • Ledgard NJ (2009b) Wilding control guidelines for farmers and land managers. N Z Plant Prot 62:380–386

    Google Scholar 

  • Ledgard NJ (2011) What is wrong with wildings? N Z Tree Grow 32:13–15

    Google Scholar 

  • Ledgard NJ, Langer L (1999) Wilding prevention. Guidelines for minimizing the risk of unwanted wilding spread from new plantings of introduced conifers. New Zealand Forest Research Institute Limited, Rotorua

    Google Scholar 

  • Lennox CL, Hoffmann JH, Coutinho T, Roques A (2009) A threat of exacerbating the spread of pitch canker precludes further consideration of a cone weevil, Pissodes validirostris, for biological control of invasive pines in South Africa. Biol Control 50:179–184

    Article  Google Scholar 

  • Lotan JE, Perry DA (1983) Ecology and regeneration of lodgepole pine. Handbook no. 606. United States Department of Agriculture, Forest Service, Washington, p 51

    Google Scholar 

  • Lovett GM, Weiss M et al (2016) Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol Appl 26:1437–1455

    Article  PubMed  Google Scholar 

  • Mason NWH, Palmer DJ, Vetrova V, Brabyn L, Paul T, Willemse P, Peltzer DA (2017) Accentuating the positive while eliminating the negative of alien tree invasions: a multiple ecosystem services approach to prioritising control efforts. Biol Invasions 19:1181–1195. doi:10.1007/s10530-016-1307-y

    Article  Google Scholar 

  • Maxwell BD, Lehnhoff E, Rew LJ (2009) The rationale for monitoring invasive plant populations as a crucial step for management. Invasive Plant Sci Manag 2:1–9

    Article  Google Scholar 

  • McAlpine KG, Howell CJ, Wotton DM (2016) Effects of tree control method, seed addition, and introduced mammal exclusion on seedling establishment in an invasive Pinus contorta forest. N Z J Ecol 40:302–309

    Article  Google Scholar 

  • McConnachie MM, van Wilgen BW, Richardson DM et al (2015) Estimating the effect of plantations on pine invasions in protected areas: a case study from South Africa. J Appl Ecol 52:110–118

    Article  Google Scholar 

  • McConnachie MM, van Wilgen BW, Ferraro PJ et al (2016) Using counterfactuals to evaluate the cost-effectiveness of controlling biological invasions. Ecol Appl 26:475–483

    Article  PubMed  Google Scholar 

  • McGregor KF, Watt MS, Hulme PE, Duncan RP (2012) What determines pine naturalization: species traits, climate suitability or forestry use? Divers Distrib 18:1013–1023

    Article  Google Scholar 

  • Menzel A, Hempel S, Klotz S, Moora M, Pyšek P, Rillig MC, Zobel M, Kühn I (2017) Mycorrhizal status helps explain invasion success of alien plant species. Ecology 98:92–102

    Article  PubMed  Google Scholar 

  • Mikola P (1970) Mycorrhizal inoculation in afforestation. Int Rev For Res 3:123–196

    Google Scholar 

  • Minore D (1979) Comparative autecological characteristics of northwestern tree species: a literature review. General technical report PNW. United States Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon

  • Moles AT, Drake DR (1999) Potential contributions of the seed rain and seed bank to regeneration of native forest under plantation pine in New Zealand. N Z J Bot 37:83–93

    Article  Google Scholar 

  • Moore MM, Wallace Covington W, Fule PZ (1999) Reference conditions and ecological restoration: a southwestern ponderosa pine perspective. Ecol Appl 9:1266–1277

    Article  Google Scholar 

  • Moran VC, Hoffmann JH, Donnnelly D, van Wilgen BW, Zimmermann HG (2000) Biological control of alien, invasive pine trees (Pinus species) in South Africa. In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds. Montana State University, Bozeman, pp 941–953

    Google Scholar 

  • Mortenson SG, Mack RN (2006) The fate of alien conifers in long-term plantings in the USA. Divers Distrib 12:456–466

    Article  Google Scholar 

  • Mostert E, Gaertner M, Holmes PM et al (2017) Impacts of invasive alien trees on threatened lowland vegetation types in the Cape Floristic Region, South Africa. S Afr J Bot 108:209–222

    Article  Google Scholar 

  • MPI (2014) The right tree in the right place. New Zealand wilding conifer management strategy 2015–2030. Ministry for Primary Industries. ISBN: 978-0-477-10511-8

  • Nuñez MA, Dickie IA (2014) Invasive belowground mutualists of woody plants. Biol Invasions 16:645–661

    Article  Google Scholar 

  • Nuñez MA, Medley KA (2011) Pine invasions: climate predicts invasion success; something else predicts failure. Divers Distrib 17:703–713

    Article  Google Scholar 

  • Nuñez MA, Pauchard A (2010) Biological invasions in developing and developed countries: does one model fit all? Biol Invasions 12:707–714

    Article  Google Scholar 

  • Nuñez MA, Relva MA, Simberloff D (2008a) Enemy release or invasional meltdown? Deer preference for exotic and native trees on Isla Victoria, Argentina. Austral Ecol 33:317–323

    Article  Google Scholar 

  • Nuñez MA, Simberloff D, Relva MA (2008b) Seed predation as a barrier to alien conifer invasions. Biol Invasions 10:1389–1398

    Article  Google Scholar 

  • Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    Article  PubMed  Google Scholar 

  • Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS ONE 8:e66832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Packer JG, Meyerson LA et al (2017) Global network for invasion science: benefits, challenges and guidelines. Biol Invasions 19:1081–1096. doi:10.1007/s10530-016-1302-1303

    Article  Google Scholar 

  • Pauchard A, Nuñez MA, Raffaele E, Bustamante RO, Ledgard N, Relva MA, Simberloff D (2010) Introduced conifer invasions in South America: an update. Front Biogeogr 2:34–36

    Google Scholar 

  • Pauchard A, Garcia R, Zalba S, Sarasola M, Zenni R, Ziller S, Nuñez MA (2015) Pine invasions in South America: reducing their ecological impacts through active management. In: Canning Clode J (ed) Biological invasions in changing ecosystems. De Gruyter Open Ltd, Berlin, pp 318–342

    Google Scholar 

  • Pauchard A, Escudero A, Garcia RA, Mdl Cruz, Langdon B, Cavieres LA, Esquivel J (2016) Pine invasions in treeless environments: dispersal overruns microsite heterogeneity. Ecol Evol 6:447–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul TSH, Ledgard NJ (2008) Effect of felled wilding pines on plant growth in high country grasslands. N Z Plant Prot 61:105–110

    Google Scholar 

  • Paul TSH, Ledgard NJ (2009) Vegetation succession associated with wilding conifer removal. N Z Plant Prot 62:374–379

    Google Scholar 

  • Pearson DE, Ortega YK, Runyon JB, Butler JL (2016) Secondary invasion: the bane of weed management. Biol Conserv 197:8–17

    Article  Google Scholar 

  • Peña E, Pauchard A (2001) Coníferas introducidas en áreas protegidas: un riesgo para la biodiversidad. Bosque Nativo 30:3–7

    Google Scholar 

  • Peña E, Langdon B, Pauchard A (2007) Árboles exóticos naturalizados en el bosque nativo chileno. Bosque Nativo 40:3–7

    Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  • Procheş Ş, Wilson JRU, Richardson DM, Rejmánek M (2008) Searching for phylogenetic pattern in biological invasions. Glob Ecol Biogeogr 17:5–10

    Google Scholar 

  • Procheş Ş, Wilson JRU, Richardson DM, Rejmánek M (2012) Native and naturalized range size in Pinus: relative importance of biogeography, introduction effort and species traits. Glob Ecol Biogeogr 21:513–523

    Article  Google Scholar 

  • Rejmánek M (1989) Invasibility of plant communities. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions. A global perspective. Wiley, Chichester, pp 369–388

    Google Scholar 

  • Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Conserv 78:171–181

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 6:1655–1661

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Rejmánek M, Richardson DM, Pyšek P (2013) Plant invasions and invasibility of plant communities. In: van der Maarel E, Franklin J (eds) Vegetation ecology. Wiley-Blackwell, Oxford, pp 387–424

    Chapter  Google Scholar 

  • Relva MA, Nunez MA, Simberloff D (2010) Introduced deer reduce native plant cover and facilitate invasion of non-native tree species: evidence for invasional meltdown. Biol Invasions 12:303–311

    Article  Google Scholar 

  • Ricciardi A, Blackburn TM, Carlton JT et al (2017) Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol 32:464–474

    Article  PubMed  Google Scholar 

  • Richardson DM (ed) (1998a) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge

    Google Scholar 

  • Richardson DM (1998b) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Richardson DM (2006) Pinus: a model group for unlocking the secrets of alien plant invasions? Preslia 78:375–388

    Google Scholar 

  • Richardson DM, Bond WJ (1991) Determinants of plant distribution: evidence from pine invasions. Am Nat 137:639–668

    Article  Google Scholar 

  • Richardson DM, Higgins SI (1998) Pines as invaders in the southern hemisphere. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 450–473

    Google Scholar 

  • Richardson DM, Kluge RL (2008) Seed banks of invasive Australian Acacia species in South Africa: role in invasiveness and options for management. Perspect Plant Ecol Evol Syst 10:161–177

    Article  Google Scholar 

  • Richardson DM, Petit R (2005) Pines as invasive aliens: outlook on transgenic pine plantations in the Southern Hemisphere. In: Williams CG (ed) Landscapes, genomics and transgenic conifers. Springer, Dordrecht, pp 169–188

    Google Scholar 

  • Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson DM, van Wilgen BW (1986) Effects of thirty five years of afforestation with Pinus radiata on the composition of mesic mountain fynbos near Stellenbosch. S Afr J Bot 52:309–315

    Article  Google Scholar 

  • Richardson DM, Cowling RM, Le Maitre DC (1990) Assessing the risk of invasive success in Pinus and Banksia in South African mountain fynbos. J Veg Sci 1:629–642

    Article  Google Scholar 

  • Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the Southern Hemisphere: determinants of spread and invadability. J Biogeogr 21:511–527

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Richardson DM, Wilgen BW, Nuñez MA (2008) Alien conifer invasions in South America: short fuse burning? Biol Invasions 10:573–577

    Article  Google Scholar 

  • Roura-Pascual N, Richardson DM et al (2009) Ecology and management of alien plant invasions in South African fynbos: accommodating key complexities in objective decision making. Biol Conserv 142:1595–1604

    Article  Google Scholar 

  • Rundel PW, Dickie IA, Richardson DM (2014) Tree invasion into treeless areas: mechanisms and ecosystem processes. Biol Invasions 16:663–675

    Article  Google Scholar 

  • Sarasola M, Rusch V, Schlichter T, Ghersa C (2006) Tree conifers invasion in steppe areas and Austrocedus chilensis forests in NW Patagonia. Ecol Austral 16:143–156

    Google Scholar 

  • Shackleton RT, Le Maitre DC, van Wilgen BW, Richardson DM (2017) Strategic planning and prioritisation for the management of a widespread invasive tree (Prosopis: mesquite) in South Africa. Ecosyst Serv. doi:10.1016/j.ecoser.2016.11.022 (in press)

    Google Scholar 

  • Sharpe DM, Fields DE (1982) Integrating the effects of climate and seed fall velocities on seed dispersal by wind: a model and application. Ecol Mod 17:297–310

    Article  Google Scholar 

  • Siggins HW (1933) Distribution and rate of fall of conifer seeds. J Agric Res 47:119–128

    Google Scholar 

  • Simberloff D, Relva MA, Nuñez M (2002) Gringos en el bosque: introduced tree invasion in a native Nothofagus/Austrocedrus forest. Biol Invasions 4:35–53

    Article  Google Scholar 

  • Simberloff D, Nuñez MA et al (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecol 35:489–504

    Article  Google Scholar 

  • Simberloff D, Souza L, Nuñez MA et al (2012) The natives are restless, but not often and mostly when disturbed. Ecology 93:598–607

    Article  PubMed  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Taylor KT, Maxwell BD, Pauchard A, Nuñez MA, Peltzer DA, Terwei A, Rew LJ (2016) Drivers of plant invasion vary globally: evidence from pine invasions within six ecoregions. Glob Ecol Biogeogr 25:96–106

    Article  Google Scholar 

  • Taylor KT, Maxwell BD, McWethy DB, Pauchard A, Nuñez MA, Whitlock C (2017) Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire. Ecology. doi:10.1002/ecy.1673

    Google Scholar 

  • Urrutia J, Pauchard A, García RA (2013) Diferencias en la composición vegetal de un bosque de Araucaria araucana (Molina) K. Koch y Nothofagus antarctica (G. Forst.) Oerst. asociadas a un gradiente de invasión de Pinus contorta Douglas ex Loudon. Gayana Botánica 70:92–100

    Article  Google Scholar 

  • Van Rensburg J, van Wilgen BW, Richardson DM (2017) The challenges of managing invasive alien plants on private land in the Cape Floristic Region: insights from Vergelegen Wine Estate (2004–2015). Trans R Soc S Afr. doi:10.1080/0035919X.2017.1288175

    Google Scholar 

  • van Wilgen B (2012) Evidence, perceptions, and trade-offs associated with invasive alien plant control in the Table Mountain National Park, South Africa. Ecol Soc 17(2):23

    Google Scholar 

  • van Wilgen BW, Richardson DM (2012) Three centuries of managing introduced conifers in South Africa: benefits, impacts, changing perceptions and conflict resolution. J Environ Manag 106:56–68

    Article  Google Scholar 

  • van Wilgen BW, Wannenburgh A (2016) Co-facilitating invasive species control, water conservation and poverty relief: achievements and challenges in South Africa’s Working for Water programme. Curr Opin Environ Sustain 19:7–17

    Article  Google Scholar 

  • van Wilgen BM, Bond WJ, Richardson DM (1992) Ecosystem management. In: Cowling RM (ed) The ecology of fynbos: nutrients, fire and diversity. Oxford University Press, Cape Town, pp 345–371

    Google Scholar 

  • van Wilgen BW, Dyer C, Hoffmann JH, Ivey P, Le Maitre DC, Moore JL, Richardson DM, Rouget M, Wannenburgh A, Wilson JRU (2011) National-scale strategic approaches for managing introduced plants: insights from Australian acacias in South Africa. Divers Distrib 17:1060–1075

    Article  Google Scholar 

  • van Wilgen BW, Forsyth GG, Le Maitre DC, Wannenburgh A, Kotzé JDF, van den Berg E, Henderson L (2012) An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biol Conserv 148:28–38

    Article  Google Scholar 

  • van Wilgen BW, Carruthers J et al (2016a) Ecological research and conservation management in the Cape Floristic Region between 1945 and 2015: history, current understanding and future challenges. Trans R Soc S Afr 71:207–303

    Article  Google Scholar 

  • van Wilgen BW, Fill JM, Baard J, Cheney C, Forsyth AT, Kraaij T (2016b) Historical costs and projected future scenarios for the management of invasive alien plants in protected areas in the Cape Floristic Region. Biol Conserv 200:168–177

    Article  Google Scholar 

  • Velarde SJ, Paul TSH, Monge J, Yao RT (2015) Cost benefit analysis of wilding conifer management in New Zealand; Part I—Important Impacts under current management. http://wildingconifers.org.nz/index.php/strategy/27-strategy/114-wilding-conifer-impact-study-under-current-management. Accessed Feb 2017

  • Wardle DA, Peltzer DA (2017) Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biol Invasions 1–16

  • Warren J, Christal A, Wilson F (2002) Effects of sowing and management on vegetation succession during grassland habitat restoration. Agric Ecosyst Environ 93:393–402

    Article  Google Scholar 

  • Wilson JRU, Gairifo C, Gibson MR et al (2011) Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions. Divers Distrib 17:1030–1046

    Article  Google Scholar 

  • Wilson JRU, Caplat P, Dickie I et al (2014) A standardized set of metrics to assess and monitor tree invasions. Biol Invasions 16:535–551

    Article  Google Scholar 

  • Wingfield MJ, Slippers B, Roux J et al (2001) Worldwide movement of exotic forest fungi, especially in the tropics and the southern hemisphere this article examines the impact of fungal pathogens introduced in plantation forestry. Bioscience 51:134–140

    Article  Google Scholar 

  • Wood JR, Dickie IA, Moeller HV, Peltzer DA, Bonner KI, Rattray G, Wilmshurst JM (2015) Novel interactions between non-native mammals and fungi facilitate establishment of invasive pines. J Ecol 103:121–129

    Article  Google Scholar 

  • Woodford DJ, Richardson DM, MacIsaac HJ et al (2016) Confronting the wicked problem of managing biological invasions. Neobiota 31:63–86

    Article  Google Scholar 

  • Yamagawa H, Ito S, Nakao T (2010) Restoration of semi-natural forest after clearcutting of conifer plantations in Japan. Landsc Ecol Eng 6:109–117

    Article  Google Scholar 

  • Zalba SM, Cuevas YA, Boó RM (2008) Invasion of Pinus halepensis Mill. following a wildfire in an Argentine grassland nature reserve. J Environ Manag 88:539–546

    Article  Google Scholar 

  • Zengeya T, Ivey P, Woodford DJ et al (2017) Managing conflict-generating invasive species in South Africa: challenges and trade-offs. Bothalia 47(2):a2160. doi:10.4102/abc.v47i2.2160

    Article  Google Scholar 

  • Zenni RD, Bailey JK, Simberloff D (2014) Rapid evolution and range expansion of an invasive plant are driven by provenance-environment interactions. Ecol Lett 17:727–735

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Gundale, A. Carrillo Gavilán, K. Taylor and L Vítková for providing information on Pinaceae management from Europe and the USA. AP and RG were funded by Fondecyt Grant 1140485 and the Institute of Ecology and Biodiversity Grants ICM P05-002 and CONICYT PFB-23. DMR and BWvW acknowledge support from the DST-NRF Centre of Excellence for Invasion Biology and the Working for Water Programme through their collaborative research project on “Integrated Management of invasive alien species in South Africa”, and the National Research Foundation (Grant 85417 to DMR; Grant 87550 to BWvW). MN and JM were funded by PICT 2014-0662 of the ANPCyT of Argentina. TP acknowledge support from the Sustainable Farming Fund (Ministry for Primary Industries; No. 13/031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Nuñez.

Additional information

Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and Martin Nuñez / Special issue on Biological Invasions in Forests prepared by a task force of the International Union of Forest Research Organizations (IUFRO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuñez, M.A., Chiuffo, M.C., Torres, A. et al. Ecology and management of invasive Pinaceae around the world: progress and challenges. Biol Invasions 19, 3099–3120 (2017). https://doi.org/10.1007/s10530-017-1483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1483-4

Keywords

Navigation