Skip to main content
Log in

Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Transferability is key to many of the most novel and interesting applications of ecological niche models, such that maximizing predictive power of model transfers is crucial. Here, we explored consensus methods as a means of reducing uncertainty and improving model transferability in anticipating the potential distribution of an invasive moth (Hyphantria cunea). Individual native-range niche models were calibrated using seven modelling algorithms and four environmental datasets, representing different degrees of dimensionality, spatial correlation, and ecological relevance, and showing different degrees of climate niche expansion. Four consensus methods were used to combine individual niche models; we assessed transferability of consensus models and the individual models used to generate them. The results suggested that ideal criteria for environmental variable selection vary among algorithms, as different algorithms showed different sensitivities to spatial dimensionality and correlation. Consensus models reflected the central tendency of individual models, and reduced uncertainty by consolidating consistency across individual models, but did not outperform individual models. The question of whether interpolation accuracy comes at the expense of transferability suggests caution in planning methodologies for processing niche models to predict invasive potential. These explorations outline approaches by which to reduce uncertainty and improve niche model transferability with vital implications for ensemble forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadzadeh F, Flecks M, Carretero MA, Böhme W, Ilgaz C, Engler JO, Harris DJ, Üzüm N, Rödder D (2013) Rapid lizard radiation lacking niche conservatism: ecological diversification within a complex landscape. J Biogeogr 40:1807–1818

    Article  Google Scholar 

  • Alberdi A, Aizpurua O, Aihartza J, Garin I (2014) Unveiling the factors shaping the distribution of widely distributed alpine vertebrates, using multi-scale ecological niche modelling of the bat Plecotus macrobullaris. Front Zool 11:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Global Ecol Biogeogr 14:529–538

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbosa AM, Real R, Vargas JM (2009) Transferability of environmental favourability models in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. Ecol Model 220:747–754

    Article  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty and habitat models. J Appl Ecol 43:413–423

    Article  Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol Biogeogr 21:481–497

    Article  Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biol 16:1145–1157

    Article  Google Scholar 

  • CABI (2015) Hyphantria cunea. Invasive species compendium. CABI Publishing, Wallingford

    Google Scholar 

  • Choi WI, Park YS (2012) Dispersal patterns of exotic forest pests in South Korea. Insect Sci 19:535–548

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TF, Loyola RD, Hof C, Nogués-Bravo D, Araújo MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Elith J, Burgman MA, Regan HM (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distributions. Ecol Model 157:313–329

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Escobar LE, Lira-Noriega A, Medina-Vogel Peterson AT (2014) Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat Health 9:221–229

    Article  PubMed  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18:2255–2261

    Article  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Global Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Gregory AW, Smith GW, Yetman J (2001) Testing for forecast consensus. J Bus Econ Stat 19:34–43

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C (2014) Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol 29:260–269

    Article  PubMed  Google Scholar 

  • Harrigan RJ, Thomassen HA, Buermann W, Smith TB (2014) A continental risk assessment of West Nile virus under climate change. Glob Change Biol 20:2417–2425

    Article  Google Scholar 

  • Hayes KR, Barry SC (2007) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Heikkinen RK, Marmion M, Luoto M (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 35:276–288

    Article  Google Scholar 

  • Hernandez PA, Graham C, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Itô Y, Hattori I (1975) Status of black-headed and red-headed types of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae). III. Distribution of various types and the discussion on the relationship among them. Appl Entomol Zool 10:189–202

    Google Scholar 

  • Itô Y, Warren LO (1973) Status of black-headed and red-headed types of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae). I. Biology of two types and results of crossing experiment. Appl Entomol Zool 8:157–171

    Google Scholar 

  • Jaenike J, Selander RK (1980) On the question of host races in the fall webworm, Hyphantria cunea. Entomol Exp Appl 27:31–37

    Article  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton J, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Lawler JJ, White D, Neilson RP, Blaustein AR (2006) Predicting climate-induced range shifts: model differences and model reliability. Global Change Biol 12:1–17

    Article  Google Scholar 

  • Li XH, Wang Y (2013) Applying various algorithms for species distribution modelling. Integr Zool 8:124–135

    Article  PubMed  Google Scholar 

  • Liu X, Li XP, Liu ZT, Tingley R, Kraus F, Guo ZW, Li YM (2014) Congener diversity, topographic heterogeneity and human-assisted dispersal predict spread rates of alien herpetofauna at a global scale. Ecol Lett 17:821–829

    Article  PubMed  Google Scholar 

  • Loewy KJ, Flansburg AL, Grenis K, Kjeldgaard MK, Mccarty J, Montesano L, Vernick J, Murphy SM (2013) Life history traits and rearing techniques for fall webworms (Hyphantria cunea Drury) in Colorado. J Lepid Soc 67:196–205

    Article  Google Scholar 

  • Mahoney PJ, Beard KH, Durso AM, Tallian AG, Long AL, Kindermann RJ, Nolan NE, Kinka D, Mohn HE (2015) Introduction effort, climate matching and species traits as predictors of global establishment success in non-native reptiles. Divers Distrib 21:64–74

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecol Biogeogr 19:122–133

    Article  Google Scholar 

  • Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martínez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Petersen MJ (2013) Evidence of a climatic niche shift following North American introductions of two crane flies (Diptera; genus Tipula). Biol Invasions 15:885–897

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT, Cohoon KP (1999) Sensitivity of distributional prediction algorithms to geographic data completeness. Ecol Model 117:159–164

    Article  Google Scholar 

  • Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecol Biogeogr 17:135–144

    Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Article  Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Peterson AT, Papeş M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560

    Article  Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

    Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Qiao HJ, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol 6:1126–1136

    Article  Google Scholar 

  • Qiao HJ, Peterson AT, Campbell L, Soberón J, Ji LQ, Escobar L (2016) NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography. doi:10.1111/ecog.01961

    Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. PNAS 106:19644–19650

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13:143–158

    Article  Google Scholar 

  • Strubbe D, Broennimann O, Chiron F, Matthysen E (2013) Niche conservatism in non-native birds in Europe: niche unfilling rather than niche expansion. Global Ecol Biogeogr 22:962–970

    Article  Google Scholar 

  • Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Global Ecol Biogeogr 20:904–914

    Article  Google Scholar 

  • Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biol 9:1353–1362

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Global Change Biol 10:2020–2027

    Article  Google Scholar 

  • Tingley R, Thompson MB, Hartley S, Chapple DG (2016) Patterns of niche filling and expansion across the invaded ranges of an Australian lizard. Ecography 39:270–280

    Article  Google Scholar 

  • Wang W, McKay BD, Dai C, Zhao N, Zhang R, Qu Y, Song G, Li SH, Liang W, Yang X, Pasquet E, Lei F (2013) Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus). J Biogeogr 40:1156–1169

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Yamanaka T, Tatsuki S, Shimada M (2001) Flight characteristics and dispersal patterns of Fall Webworm (Lepidoptera: Arctiidae) males. Environ Entomol 30:1150–1157

    Article  Google Scholar 

  • Yang ZQ, Wang XY, Wei JR, Qu HR, Qiao XR (2008) Survey of the native insect natural enemies of Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) in China. Bull Entomol Res 98:293–302

    Article  CAS  PubMed  Google Scholar 

  • Yang ZQ, Wang XY, Zhang YN (2014) Recent advances in biological control of important native and invasive forest pests in China. Biol Control 68:117–128

    Article  Google Scholar 

  • Zhu GP, Rédei D, Kment P, Bu WJ (2014) Effect of geographic background and equilibrium state on niche model transferability: predicting areas of invasion of Leptoglossus occidentalis. Biol Invasions 16:1069–1081

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Paul Opler (Colorado State University) for sharing data and providing assistance with data from Butterflies and Moths of North America. This study was funded by National Natural Science Foundation of China (31401962), the program of Using Three Years to Introduce More than One Thousand High Level Talents in Tianjin (5KQM110030), Tianjin 131 Creative Talents Cultivation Project (ZX110204), and the Talent Introduction Program in Tianjin Normal University (5RL127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng-Ping Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5073 kb)

Supplementary material 2 (XLSX 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, GP., Peterson, A.T. Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol Invasions 19, 2519–2532 (2017). https://doi.org/10.1007/s10530-017-1460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1460-y

Keywords

Navigation