Skip to main content
Log in

The naming of Phragmites haplotypes

  • PHRAGMITES INVASION
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The genus Phragmites includes several species, of which only Phragmites australis has a worldwide distribution. It has been several decades since the last formal taxonomic examination of the genus and a number of recent genetic studies have revealed novel diversity and unique lineages within the genus. In my initial work on genetic variation in Phragmites (Saltonstall in Proc Nat Acad Sci 99:2445–2449, 2002), I came up with a naming scheme for identifying chloroplast DNA haplotypes which combined unique sequences at two loci, designated by numbers, to form haplotypes, designated by letters. Here I describe this naming system in more detail, explain how it has evolved over time as more genetic data has become available, provide a summary of all haplotypes currently available on GenBank, and address some common misunderstandings about how the haplotypes are named.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An J-X, Wang Q, Yang J, Liu J-Q (2012) Phylogeographic analyses of Phragmites australis in China: native distribution and habitat preference of the haplotype that invaded North America. J Syst Evol 0:1–7

    Google Scholar 

  • Blum MJ, Bando KJ, Katz M, Strong DR (2007) Geographic structure, genetic diversity and source tracking of Spartina alterniflora. J Biogeogr 34:2055–2069

    Article  Google Scholar 

  • Chu H, Cho WK, Jo Y, Kim W-I, Rim Y, Kim J-Y (2011) Identification of natural hybrids in Korean Phragmites using haplotype and genotype analyses. Plant Syst Evol 293:247–253

    Article  Google Scholar 

  • Clayton WD (1967) Studies in the Gramineae: XIV. Kew Bull 21:111–117

    Article  Google Scholar 

  • Clevering O, Lissner J (1999) Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot 64:185–208

    Article  Google Scholar 

  • Doyle JJ, Morgante M, Tingey SV, Powell W (1998) Size homoplasy in choroplast microsatellites of wild perennial relatives of soybean (Glycine subgenus Glycine). Mol Biol Evol 15:215–218

    Article  CAS  Google Scholar 

  • Freeland JR, Vachon N (2012) Repetitive sequences in phylogeograhic inference: a reply to Saltonstall and Lambertini (2012). Mol Ecol Res 12:586–589

    Article  Google Scholar 

  • Genetics Home Reference (2015) Haplotype. http://ghr.nlm.nih.gov/glossary=haplotype. Accessed 2 Oct 2015

  • Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma DP (1993) Evolution of noncoding regions of the chloroplast genome. Mol Phylogenet Evol 2:52–64

    Article  CAS  Google Scholar 

  • Graham SW, Reeves PA, Burns ACE, Olmstead RG (2000) Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int J Plant Sci 161:S83–S96

    Article  CAS  Google Scholar 

  • Hamilton MB, Braverman JM, Soria-Hernanz DF (2003) Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in new world species of the Lecythidaceae. Mol Biol Evol 20:1710–1721

    Article  CAS  Google Scholar 

  • Hauber DP, Saltonstall K, White DA, Hood CS (2011) Genetic variation in the common reed, Phragmites australis, in the Mississippi River Delta marshes: evidence for multiple introductions. Estuar Coasts 34:851–862

    Article  CAS  Google Scholar 

  • Hurry C, James EA, Thompson RM (2013) Connectivity, genetic structure and stress response of Phragmites australis: issues for restoration in a salinising wetland system. Aquat Bot 104:138–146

    Article  Google Scholar 

  • Ingvarsson PK, Ribstein S, Taylor DR (2003) Molecular evolution of insertions and deletion in the chloroplast genome of Silene. Mol Biol Evol 20:1737–1739

    Article  CAS  Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498

    Article  Google Scholar 

  • Lambert AM, Saltonstall K, Long R, Dudley TL (2016) Biogeography of Phragmites lineages in the southwestern United States. Biol Invasions. doi:10.1007/s10530-016-1164-8

    Article  Google Scholar 

  • Lambertini C (2016) Heteroplasmy: another complexity of the Phragmites genome to take into account. Biol Invasions. doi:10.1007/s10530-016-1193-3

  • Lambertini C, Gustafsson MHG, Frydenberg J, Lissner J, Speranza M et al (2006) A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst Evol 258:161–182

    Article  Google Scholar 

  • Lambertini C, Mendelssohn IA, Gustafsson MHG, Olesen B, Riis T, Sorrell B, Brix H (2012a) Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. Am J Bot 99:538–551

    Article  CAS  Google Scholar 

  • Lambertini C, Sorrell BK, Riis T, Olesen B, Brix H (2012b) Exploring the borders of European Phragmites within a cosmopolitan genus. AoB Plants 2012:pls020. doi:10.1093/aobpla/pls020

    Article  CAS  Google Scholar 

  • Meadows RE, Saltonstall K (2007) Distribution of native and introduced Phragmites australis in freshwater and oligohaline tidal marshes of the Delmarva peninsula and southern New Jersey. J Torrey Bot Soc 134:99–107

    Article  Google Scholar 

  • Meyerson LA, Cronin JT (2013) Evidence for multiple introductions of Phragmites australis to North America: detection of a new non-native haplotype. Biol Invasions 15:2605–2608

    Article  Google Scholar 

  • NCBI (2016) http://www.ncbi.nlm.nih.gov/nucleotide. Accessed 10 Mar 2016

  • Saltonstall K (2001) A set of primers for amplification of noncoding regions of chloroplast DNA in the grasses. Mol Ecol Notes 1:76–78

    Article  CAS  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Nat Acad Sci 99:2445–2449

    Article  CAS  Google Scholar 

  • Saltonstall K (2003) Microsatellite variation within and among North American lineages of Phragmites australis. Mol Ecol 12:1689–1702

    Article  CAS  Google Scholar 

  • Saltonstall K (2011) Remnant native Phragmites australis maintains genetic diversity despite multiple threats. Conserv Genet 12:1027–1033

    Article  Google Scholar 

  • Saltonstall K, Hauber D (2007) Notes on Phragmites australis (Poaceae: Arundinoideae) in North America. J Bot Res Inst Tex 1:385–388

    Google Scholar 

  • Saltonstall K, Lambertini C (2012) The value of repetitive sequences in chloroplast DNA for phylogeographic inference: a comment on Vachon & Freeland 2011. Mol Ecol Resour 12:581–585

    Article  Google Scholar 

  • Shimono Y, Kurokawa S, Nishida T, Ikeda H, Futagami N (2013) Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae), a native pioneer grass in Japan. Botany 91:449–456

    Article  CAS  Google Scholar 

  • Soltis DE, Gitzendanner MA, Strenge DD, Soltis PS (1997) Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Plant Syst Evol 206:353–373

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou BouvetJG, Meyer JL (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Tachida H, Iizuka M (1992) Persistence of repeated sequences that evolve by replication slippage. Genetics 131:471–478

    Article  CAS  Google Scholar 

  • Vachon N, Freeland JR (2011) Phylogeographic inference from chloroplast DNA: quantifying the effects of mutations in repetitive and non-repetitive sequences. Mol Ecol Resour 11:279–285

    Article  CAS  Google Scholar 

  • WCSP (2015) World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/. Retrieved 29 Nov 2015

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92:1887–1898

    Article  CAS  Google Scholar 

  • Yamane K, Yano K, Kawahara T (2006) Patterna dn rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. DNA Res 13:197–204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank the many collectors who have sent me samples of Phragmites, the herbaria who have allowed me to sample their collections, and the many agencies who have funded my research over the past 20 years. Carla Lambertini has kindly shared sequences with me and provided feedback on this naming scheme. Laura Geyer and two reviewers provided helpful comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Saltonstall.

Additional information

Guest editors: Laura A. Meyerson and Kristin Saltonstall/Phragmites invasion.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 101 kb)

Supplementary material 2 (DOCX 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saltonstall, K. The naming of Phragmites haplotypes. Biol Invasions 18, 2433–2441 (2016). https://doi.org/10.1007/s10530-016-1192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1192-4

Keywords

Navigation