Skip to main content

Advertisement

Log in

How invasion by Ailanthus altissima transforms soil and litter communities in a temperate forest ecosystem

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The invasive tree Ailanthus altissima (Mill.) Swingle (tree of heaven) is considered as an ecosystem transformer, which alters plant communities in open areas and forests. Nothing is yet known about its potential effects on forest soil biota and ecosystem functioning. We present here the first study assessesing the impact of A. altissima on soil and litter invertebrate communities in a temperate forest. We analyzed the effect of varying A. altissima densities in a forest of north-eastern France on soil microbial activity, diversity of various litter and soil invertebrate groups (Arthropoda, Lumbricidae, Gastropoda), diversity of functional groups (predatory, detritivorous, coprophagous, phytophagous), and trophic structure. Our study shows that increasing density of A. altissima is associated to lower soil microbial activity, decreasing abundance of litter detritivores (Acari and Collembola) and aboveground predatory Coleoptera, and decreasing species richness of terrestrial Gastropoda. In contrast, increased A. altissima density corresponded with greater abundances of litter Lumbricidae and aboveground coprophagous Coleoptera. We found an overall impact of A. altissima invasion on the soil food web structure that could accelerate the mineralization of organic matter and potentially favor nitrophilous plant species in understory plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayre K (2001) Effect of predator size and temperature on the predation of Deroceras reticulatum (Muller) (Mollusca) by carabid beetles. J Appl Entomol 125(7):389–395

    Article  Google Scholar 

  • Babel U (1977) Influence of high densities of fine roots of Norway spruce on processes in humus covers. Ecol Bull 25:584–586

    Google Scholar 

  • Baguette M (1992) Sélection de l’habitat des Carabidae en milieu forestier. Ph.D. Thesis, Université catholique de Louvain, Belgium

  • Boch S, Berlinger M, Fischer M, Knop E, Nentwig W, Türke M, and Prati D. (2012) Fern and bryophyte endozoochory by slugs. Oecologia 172:817–822

  • Bory G (1983) Quelques aspects de la biologie de l’Ailanthus altissima (Mill.) Swingle: Mouvements de métabolites, croissance, développement, sécrétion et floraison chez divers types d’arbres. Ph.D. Thesis, Université Paris 7, France

  • Bouché MB (1969) Comparaison critique de méthodes d’évaluation des populations de Lombricidés. Pedobiologia 9:26–34

    Google Scholar 

  • Butenschoen O, Scheu S, Eisenhauer N (2011) Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biol Chem 43:1902–1907

    Article  CAS  Google Scholar 

  • Carlsson NOL, Sarnelle O, Strayer DL (2009) Native predators and exotic prey –an acquired taste? Front Ecol Environ 7(10):525–532

    Article  Google Scholar 

  • Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain. Biol Invasions 11(8):1973–1986

    Article  Google Scholar 

  • Chahartaghia M, Langelb R, Scheua S, Ruessa L (2005) Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biol Biochem 37:1718–1725

    Article  Google Scholar 

  • Clair-Maczulajtys D, Bory G (1983) Pedicellate extrafloral nectaries in Ailanthus glandulosa. Can J Bot 61:683–691

    Article  Google Scholar 

  • Cook RT, Bailey SER, McCrohan CR, Nash B, Woodhouse RM (2000) The influence of nutritional status on the feeding behaviour of the field slug, Deroceras reticulatum (Müller). Anim Behav 59(1):167–176

    Article  PubMed  Google Scholar 

  • Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ, Brown JH, Rosenzweig ML, Gardener MR, Carroll SP, Thompson K, Pickett STA, Stromberg JC, Tredici PD, Suding KN, Ehrenfeld JG, Grime JP, Mascaro J, Briggs JC (2011) Don’t judge species on their origins. Nature 474:153–154

    Article  CAS  PubMed  Google Scholar 

  • de Jong YSDM (ed) (2013) Fauna Europaea version 2.6. Web Service available online at http://www.faunaeur.org

  • Deleporte S (2001) Changes in the earthworm community of an acidophilous lowland beech forest during a stand rotation. Eur J Soil Biol 37:1–7

    Article  Google Scholar 

  • Dormann CF, King R (2004) Comparing the palatability of native and non-native Mediterranean plants. Ecol Mediterr 30:39–46

    Google Scholar 

  • Dormont L, Rapior S, McKey DB, Lumaret JP (2007) Influence of dung volatiles on the process of resource selection by coprophagous beetles. Chemoecology 17:23–30

    Article  CAS  Google Scholar 

  • Duchaufour P (1977) Pédogénèse et classification. Pédologie, vol 1. Masson, Paris, pp 51–70

    Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • El Keblawy A, Al Rawai A (2007) Impacts of the invasive exotic Prosopis juliflora (Sw.) D.C. on the native flora and soils of the UAE. Plant Ecol 190(1):1573–5052

    Google Scholar 

  • Falkner G, Obrdlík P, Castella E, Speight MCD (2001) Shelled gastropoda of western Europe. Friedrich-Held-Gesellschaft, München

    Google Scholar 

  • Ferry C (1986) Étude éco-éthologique des relations trophiques entre le coléoptère carabique Abax ater Villers et quelques crustacés isopodes Thèse de Doctorat, Université Paris VI, France

  • Finzi AC, Van Breemen N, Canham CD (1998) Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecol Appl 8(2):440–446

    Google Scholar 

  • Gallardo A, Merino J (1992) Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochemistry 15(3):213–228

    Article  CAS  Google Scholar 

  • Garceau C, Coderre D (1991) Efficiency of an ethological method for earthworm exctraction from a recent plantation of deciduous trees. Pedobiologia 35:27–34

    Google Scholar 

  • Gerber E, Krebs C, Murrel C, Moretti MR, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol Conserv 141:646–654

    Article  Google Scholar 

  • Gillman GP (1979) A proposed method for the measurement of exchange properties of highly weathered soils. Soil Res 17(1):129–139

    Article  CAS  Google Scholar 

  • Gillman GP, Sumpter EA (1986) Modification to the compulsive exchange method for measuring exchange characteristics of soils. Soil Res 24(1):61–66

    Article  CAS  Google Scholar 

  • Global Invasive Species Database (2014) Ailanthus altissima. http://www.issg.org/database/species/ecology.asp?si=319&fr=1&sts=sss&lang=EN. Accessed 15 June 2014

  • Gómez-Aparicio L, Canham CD (2008) Neighborhood models of the effects of invasive tree species on ecosystem processes. Ecol Monogr 78(1):69–86

    Article  Google Scholar 

  • Grayston SJ, Prescott CE (2005) Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biol Chem 37:1157–1167

    Article  CAS  Google Scholar 

  • Guillemain M, Loreau M, Daufresne T (1997) Relationships between the regional distribution of carabid beetles (Coleoptera, Carabidae) and the abundance of their potential prey. Acta Oecol 18(4):465–483

    Article  Google Scholar 

  • Heisey RM (1990a) Allelopathic and herbicidal effects of extracts from tree-of-heaven (Ailanthus altissima). Am J Bot 77:662–670

    Article  Google Scholar 

  • Heisey RM (1990b) Evidence for allelopathy by tree-of-heaven (Ailanthus altissima). J Chem Ecol 16:2039–2055

    Article  CAS  PubMed  Google Scholar 

  • Heisey RM (1996) Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am J Bot 83:192–200

    Article  Google Scholar 

  • Heisey RM (1997) Allelopathy and the secret life of Ailanthus altissima. Arnoldia 57(3):28–36

    Google Scholar 

  • Huo Q, Shao J, Lin Q (2012) Study on the antibacterial and bactericidal effects of Ailanthus altissima leaves extract. Asian J Chem 24(8):3545–3547

    CAS  Google Scholar 

  • Joshi BC, Pandey A, Chaurasia L, Pal M, Sharma RP, Khare A (2003) Antifungal activity of the stem bark of Ailanthus excelsa. Fitoterapia 74(7):689–691

    Article  CAS  PubMed  Google Scholar 

  • Kleiner K, Smith G (2005) Effects of tree species on soil bacterial communities and positive feedback on Ailanthus altissima. ESA 2005 annual meeting, poster session 20

  • Kourtev PS, Huang W, Ehrenfeld JG (1999) Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. Biol Invasions 1:237–245

    Article  Google Scholar 

  • Kowarik I (1983) Zur Einbürgerung und zum pflanzengeographischen Verhalten des Götterbaumes (Ailanthus altissima (Mill.) Swingle) im französischen Mittelmeergebiet (Bas-Languedoc). Phytocoenologia 11:389–405

    Article  Google Scholar 

  • Kowarik I, Säumel I (2007) Biological flora of central Europe: Ailanthus altissima (Mill.) Swingle. Perspect Plant Ecol Evol Syst 8:207–237

    Article  Google Scholar 

  • Lee DG, Chang YS, Park Y, Hahm K, Woo ER (2002) Antimicrobiologic effects of ocotillone isolated from stem bark of Ailanthus altissima. J Microbiol Biotechnol 12:854–857

    Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69(1):1–24

    Article  Google Scholar 

  • Lindsay EA, French K (2006) The impact of the weed Chrysanthemoides monilifera ssp. rotundata on coastal leaf litter invertebrates. Biol Invasions 8:177–192

    Article  Google Scholar 

  • Loreau M (1983a) Le régime alimentaire de Abax ater Vill. (Coleoptera, Carabidae). Acta Oecol 4:253–263

    Google Scholar 

  • Loreau M (1983b) Le régime alimentaire de huit carabides (Coleoptera) communs en milieu forestier. Acta Oecol 4:331–343

    Google Scholar 

  • Loreau M (1986) Niche differentiation and community organization in forest carabid beetles. Carabid beetles—their adaptations and dynamics. Gustav Fischer, Stuttgart, pp 465–487

    Google Scholar 

  • Lu JH, He YQ (2010) Fumigant toxicity of Ailanthus altissima Swingle, Atractylodes lancea (Thunb.) DC. and Elsholtzia stauntonii Benth extracts on three major stored-grain insects. Ind Crops Prod 32:681–683

    Article  Google Scholar 

  • Lu JH, Wu S (2010) Bioactivity of essential oil from Ailanthus altissima bark against 4 major stored-grain insects. Afr J Microbiol Res 4(3):154–157

    Google Scholar 

  • Matrai K, Szemethy L, Toth P, Katona K, Szekely J (2004) Resource use by deer in lowland non-native forests, Hungary. J Wildl Manage 68(4):879–888

    Article  Google Scholar 

  • McAvoy TJ, Snyder AL, Johnson N, Salom SM, Kok LT (2012) Road survey of the invasive tree-of-heaven (Ailanthus altissima) in Virginia. Invasive Plant Sci Manage 5(4):506–512

    Article  Google Scholar 

  • McDowall RM (2004) Shoot first, and then ask questions: a look at aquarium fish imports and invasiveness in New Zealand. NZ J Mar Freshwat Res 38(3):503–510

    Article  Google Scholar 

  • Motard E, Muratet A, Clair-Maczulajtys D, Machon N (2011) Does the invasive species Ailanthus altissima threaten floristic diversity of temperate peri-urban forests? C R Biol 334:872–879

    Article  PubMed  Google Scholar 

  • Oksanen JF, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL et al. (2013) Vegan: community ecology package. R package. http://CRAN.R-project.org/package=vegan

  • Pascal M, Lorvelec O, Vigne JD (2006) Invasions biologiques et extinctions: 11 000 ans d’histoire des vertébrés en France. Belin, Paris

    Google Scholar 

  • Pascual-Villalobos MJ, Robledo A (1998) Screening for anti-insect activity in mediterranean plants. Ind Crops Prod 8:183–194

    Article  CAS  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecol Ind 6(4):780–793

    Article  Google Scholar 

  • Pedersini C, Bergamin M, Aroulmoji V, Baldini S, Picchio R, Pesce PG, Ballarin L, Murano E (2011) Herbicide activity of extracts from Ailanthus altissima (Simaroubaceae). Nat Prod Commun 6(5):593

    CAS  PubMed  Google Scholar 

  • Post RD, Beeby AN (1996) Activity of the microbial decomposer community in metal-contaminated roadside soils. J Appl Ecol 33:703–709

    Article  Google Scholar 

  • Prescott CE, Corbin JP, Parkinson D (1992) Immobilization and availability of N and P in the forest floors of fertilized Rocky Mountain coniferous forests. Plant Soil 143(1):1–10

    Article  CAS  Google Scholar 

  • Pritekel C, Whittemore-Olson A, Snow N, Moore JC (2006) Impacts from invasive plant species and their control on the plant community and belowground ecosystem at Rocky Mountain National Park, USA. Appl Soil Ecol 32:132–141

    Article  Google Scholar 

  • Radtke A, Ambrass S, Zerbe S, Tonon G, Fontana V, Ammer C (2013) Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For Ecol Manage 291:308–317

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  •  Reinhart KO, Greene E, Callaway RM (2005) Effects of Acer platanoides invasion on understory plant communities and tree regeneration in the northern Rocky Mountains. Ecography 28(5):573–582

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Salmon S, Frizzera L, Camaret S (2008) Linking forest dynamics to richness and assemblage of soil zoological groups and to soil mineralization processes. For Ecol Manage 256:1612–1623

    Article  Google Scholar 

  • Sarkar SK, Chang CK (1997) The Simes method for multiple hypothesis testing with positively dependent test statistics. J Am Stat Assoc 92:1601–1608

    Article  Google Scholar 

  • Schneider K, Maraun M (2005) Feeding preferences among dark pigmented fungal taxa (‘‘Dematiacea’’) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari). Pedobiologia 49:61–67

    Article  Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    Article  CAS  Google Scholar 

  • Simberloff D (2000) No reserve is an island: marine reserves and non indigenous species. Bull Mar Sci 66(3):567–580

    Google Scholar 

  • Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vila M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66

    Article  PubMed  Google Scholar 

  • Simes RJ (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73:751–754

    Article  Google Scholar 

  • Speiser B (2001) Food and feeding behaviour. In: Barker GM (ed) The biology of terrestrial molluscs. CABI, Wallingford, pp 259–288

    Chapter  Google Scholar 

  • Standish RJ (2004) Impact of an invasive clonal herb on epigaeic invertebrates in forest remnants in New Zealand. Biol Conserv 116:49–58

    Article  Google Scholar 

  • Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y et al (2013) Identification of 100 fundamental ecological questions. J Ecol 101(1):58–67

    Article  Google Scholar 

  • Symondson WOC (2004) Coleoptera (Carabidae, Drilidae, Lampyridae and Staphylinidae) as predators of terrestrial gastropods. In: Barker GM (ed) Natural enemies of terrestrial molluscs. CAB International, Oxford, pp 37–84

    Chapter  Google Scholar 

  • Thiele HU (1977) Carabid beetles in their environment: a study on habitat selection by adaptations in physiology and behaviour. Springer, New-York

    Book  Google Scholar 

  • Török K, Botta-Dukát Z, Dancza I, Németh I, Kiss J, Mihály B, Magyar D (2003) Invasion gateways and corridors in the Carpathian Basin: biological invasions in Hungary. Biol Invasions 5:349–356

    Article  Google Scholar 

  • Tsao R, Romanchuk FE, Peterson CJ, Coats JR (2002) Plant growth regulatory effect and insecticidal activity of the extracts of the tree of heaven (Ailanthus altissima L.). BMC Ecol 2:1–6

    Article  PubMed Central  PubMed  Google Scholar 

  • Udvardy L (1998) Spreading and coenological circumstances of the tree of heaven (Ailanthus altissima) in Hungary. Acta Bot Hung 41:299–314

    Google Scholar 

  • Vilà M, Tessier M, Suehs CM (2006) Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J Biogeogr 33:853–861

    Article  Google Scholar 

  • Wardle DA, Nicholson KS, Rahman A (1995) Ecological effects of the invasive weed species Senecio jacobaea L. (ragwort) in a New Zealand pasture. Agric Ecosyst Environ 56:19–28

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Callaway RM, Van der Putten WH (2011) Terrestrial ecosystem responses to species gains and losses. Science 332(6035):1273–1277

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C. by fumigation-extraction. An automated procedure. Soil Biol Biochem 22:167–169

    Article  Google Scholar 

  • Zhao CC, Shao JH, Li X, Xu J, Zhang P (2005) Antimicrobial constituents from fruits of Ailanthus altissima Swingle. Arch Pharmacal Res 28:1147–1151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Jean-François Ponge, “Muséum national d’Histoire Naturelle”, France, for his critical comments and suggestions in improving this manuscript. Our special thanks to Claude Lagarde, Office National des Forêts of Fontainebleau and Christian Desmier, “Conseil Général de la Seine et Marne”, who provided logistics, all the authorizations we needed for our sampling and prior GPS mapping of our study area. We especially thank Pr. Cécile Butor, Dr. Elisabeth Petit-Koskas, Dr. Patrick Laurenti, Dr. Romain Nattier and the two anonymous reviewers for their useful comments on the manuscript. We thank Audrey Muratet and Gabrielle Martin, MNHN for their assistance in statistical analyses, Steve Hubert, Laboratoire de Physiologie de l’Arbre, Université Paris Diderot for his assistance in identifying the invertebrates, Olivier Gargomini, MNHN for his assistance in identifying terrestrial Gastropoda, Odile Loison, for entrusting us with her team and having provided the facilities of “Station d’Écologie Forestière de Fontainebleau”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Motard.

Appendices

Appendix 1

See Table 6.

Table 6 Mean abundances (±SD) of litter invertebrate orders (in bold) and classes (in italic) and functional groups for each A. altissima density class (see Table 1)

Appendix 2

See Table 7.

Table 7 List of families, abundance and functional groups of soil surface Coleoptera for each A. altissima density class (see Table 1)

Appendix 3

See Table 8.

Table 8 List of species and abundance of soil surface Gastropoda for each A. altissima density class (see Table 1)

Appendix 4

See Table 9.

Table 9 Species and functional groups of Lumbricidae sampled by formalin method for each A. altissima density class (see Table 1) (immature individuals were identified at the genus level and are indicated as Lumbricus sp., Allobophora sp. and Allurus sp.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motard, E., Dusz, S., Geslin, B. et al. How invasion by Ailanthus altissima transforms soil and litter communities in a temperate forest ecosystem. Biol Invasions 17, 1817–1832 (2015). https://doi.org/10.1007/s10530-014-0838-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0838-3

Keywords

Navigation