Skip to main content
Log in

How to account for habitat suitability in weed management programmes?

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Designing efficient management strategies for already established invasive alien species is challenging. Here, we ask whether environmental suitability, as predicted by species distribution models, is a useful basis of cost-effective spatial prioritization in large-scale surveillance and eradication programmes. We do so by means of spatially and temporarily explicit simulations of the spread of a case study species (Ambrosia artemisiifolia L.) in Austria and southern Germany under different management regimes. We ran these simulations on a contiguous grid of the study area with each grid cell (~35 km²) characterized by a habitat suitability value derived from the predictions of a species distribution model. The management regimes differed in terms of (a) a minimum habitat suitability rank p (suitability threshold) used to separate cells for surveillance from those which are not controlled; and (b) the strategy for selecting cells for annual campaigns from the pool defined by p. According to the results (i.e., number of cells infested in 2050 as well as infested on average per year) the most efficient way to base surveillance on suitability is to define the temporal sequence of management according to the grid cells’ suitability ranks. Management success declines sharply when the suitability threshold is set too high, but only moderately when it is set too low. We conclude that accounting for environmental suitability is important for large-scale management programmes of invasive alien species and that species distribution models are hence useful tools for designing such programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bogich T, Shea K (2008) A state-dependent model for the optimal management of an invasive metapopulation. Ecol Appl 18:748–761

    Article  PubMed  Google Scholar 

  • Brandes D, Nitzsche J (2007) Verbreitung, Ökologie und Soziologie von Ambrosia artemisiifolia L. in Mitteleuropa. Tuexenia 27:167–194

    Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  PubMed  CAS  Google Scholar 

  • Chauvel B, Dessaint F, Cardinal-Legrand C, Bretagnolle F (2006) The historical spread of Ambrosia artemisiifolia L. in France from herbarium records. J Biogeogr 33:665–673

    Article  Google Scholar 

  • Diez JM, Williams PA, Randall RP, Sullivan JJ, Hulme PE, Duncan RP (2009) Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol Lett 12:1174–1183

    Article  PubMed  Google Scholar 

  • Dullinger S, Kleinbauer I, Peterseil J, Smolik M, Essl F (2009) Niche based distribution modelling of an invasive alien plant: effects of population status, propagule pressure and invasion history. Biol Inv 11:2401–2414

    Article  Google Scholar 

  • Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol Lett 13:528–541

    Article  PubMed  Google Scholar 

  • Essl F, Dullinger S, Kleinbauer I (2009) Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81:119–133

    Google Scholar 

  • Essl F, Dullinger S, Rabitsch W et al (2011a) Reply to Keller and Springborn: no doubt about invasion debt. Proc Nat Acad Sci USA 108:E221

    Article  CAS  Google Scholar 

  • Essl F, Dullinger S, Rabitsch W et al (2011b) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci USA 108:203–207

    Article  PubMed  CAS  Google Scholar 

  • Fox JC, Buckley YM, Panetta FD, Bourgoin J, Pullar D (2009) Surveillance protocols for management of invasive plants: modelling Chilean needle grass (Nassella neesiana) in Australia. Divers Distrib 15:577–589

    Article  Google Scholar 

  • Giljohann KM, Hauser CE, Williams NSG, Moore JL (2011) Optimizing invasive species control across space: willow invasion management in the Australian Alps. J Appl Ecol 48:1286–1294

    Article  Google Scholar 

  • Gladieux P, Giraud T, Kiss L, Genton BJ, Jonot O, Shykoff JA (2011) Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biol Inv 13:933–944

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hauser CE, McCarthy MA (2009) Streamlining ‘search and destroy’: cost-effective surveillance for pest management. Ecol Lett 12:683–692

    Article  PubMed  Google Scholar 

  • Hulme P (2003) Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178–193

    Article  Google Scholar 

  • Hulme PE, Pyšek P, Nentwig W, Vilà M (2009) Will threat of biological invasions unite the European Union? Science 324:40–41

    Article  PubMed  CAS  Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042

    Article  Google Scholar 

  • Kriticos DJ, Sutherst RW, Brown JR, Adkins SW, Maywald GF (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J Appl Ecol 40:111–124

    Article  Google Scholar 

  • Krug RM, Roura-Pascual N, Richardson DM (2010) Clearing of invasive alien plants under different budget scenarios: using a simulation model to test efficiency. Biol Inv 12:4099–4112

    Article  Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • McNeely JA, Mooney HA, Neville LE, Schei PJ, Waage JK (2001) Global strategy on invasive alien species. IUCN Gland, Switzerland

  • Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC (2007) Optimal detection and control strategies for invasive species management. Ecol Econ 61:237–245

    Article  Google Scholar 

  • Moody ME, Mack RN (1988) Controlling the spread of plant invasions: the importance of nascent foci. J Appl Ecol 25:1009–1021

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    PubMed  CAS  Google Scholar 

  • Myers JH, Bazely DR (2003) Ecology and control of introduced plants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nelder J, Mead R (1965) A simplex-method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Niklfeld H (1998) Mapping the flora of Austria and the eastern Alps. Revue Valdotaine d’Histoire Naturelle 51:53–62

    Google Scholar 

  • Panetta FD, Cacho O, Hester S, Sims-Chilton N, Brooks S (2011) Estimating and influencing the duration of weed eradication programmes. J Appl Ecol 48:980–988

    Article  Google Scholar 

  • Regan TJ, Chades I, Possingham HP (2011) Optimally managing under imperfect detection: a method for plant invasions. J Appl Ecol 48:76–85

    Article  Google Scholar 

  • Reinhardt F, Herle M, Bastiansen M, Streit B (2003) Ökonomische Folgen der Ausbreitung von Neobiota. Umweltbundesamt Texte 79:1–248

    Google Scholar 

  • Schönfelder P (1999) Mapping the flora of Germany. Acta Botanica Fennica 162:43–53

    Google Scholar 

  • Shine C, Kettunen M, Genovesi P, Essl F, Gollasch S, Rabitsch W, Scalera R, Starfinger U, ten Brink P (2010) Assessment to support continued development of the EU Strategy to combat invasive alien species. Final Report for the European Commission. Technical report, Institute for European Environmental Policy (IEEP), Brussels, Belgium

  • Smolik MG, Dullinger S, Essl F, Kleinbauer I, Leitner M, Peterseil J, Stadler LM, Vogl G (2010) Integrating species distribution models and interacting particle systems to predict the spread of an invasive alien plant. J Biogeogr 37:411–422

    Article  Google Scholar 

  • Taramarcaz P, Lambelet C, Clot B, Keimer C, Hauser C (2005) Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly 135:538–548

    PubMed  CAS  Google Scholar 

  • Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Underwood EC, Klinger R, Moore PE (2004) Predicting patterns of non-native plant invasions in Yosemite National Park, California, USA. Divers Distrib 10:447–459

    Article  Google Scholar 

  • Veitch CR, Clout MN (2002) Turning the tide: the eradication of invasive species. IUCN-The World Conservation Union, Auckland

    Google Scholar 

  • Vilà M, Basnou C, Pyšek P et al (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Vogl G, Smolik M, Stadler LM, Leitner M, Essl F, Dullinger S, Kleinbauer I (2008) Modelling the spread of ragweed: effects of habitat, climate change and diffusion. Eur Phys J Special Top 161:167–173

    Article  Google Scholar 

  • Williamson M, Dehnen-Schmutz K, Kühn I, Hill M, Klotz S, Milbau A, Stout J, Pyšek P (2009) The distribution of range sizes of native and alien plants in four European countries and the effects of residence time. Divers Distrib 15:158–166

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Academy of Sciences within the Global Change Programme. We are grateful to R. May, H. Niklfeld, L. Schratt-Ehrendorfer, and T. Englisch for access to the data of the Floristic Mapping Projects of Austria and Germany. Valuable unpublished distribution data have been provided by numerous other colleagues. We are grateful to two anonymous reviewers for their constructive comments and in particular to editor Joslin Moore for her detailed and encouraging suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Richter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, R., Dullinger, S., Essl, F. et al. How to account for habitat suitability in weed management programmes?. Biol Invasions 15, 657–669 (2013). https://doi.org/10.1007/s10530-012-0316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0316-8

Keywords

Navigation