Skip to main content
Log in

Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To test the applicability of Cpf1 from Francisella novivida in genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.

Results

An easy-to-use vector toolkit, containing a CEN6/ARS4 plasmid expressing Cpf1 from Francisella novivida (FnCpf1) and a 2 μ plasmid for crRNA or crRNA array expressing, was constructed for Cpf1-assisted genomic integration in S. cerevisiae. Our results showed that FnCpf1 allowed for targeted singleplex, doubleplex, and tripleplex genomic integration of in vivo assembled DNA parts with efficiencies of 95, 52, and 43%, respectively.

Conclusions

CRISPR-Cpf1 system allows for efficient genomic integration of in vivo assembled DNA parts in S. cerevisiae, and thus provides an alternative CRISPR-Cas method for metabolic pathway engineering in addition to CRISPR-Cas9 system previously reported for yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14(2):115–132

    Article  PubMed  CAS  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu H et al (2016) Screening and identification of proteins interacting with IL-24 by the yeast two-hybrid screen, Co-IP, and FRET assays. Anticancer Drugs 27:318

    Article  PubMed  CAS  Google Scholar 

  • Jakočiūnas T et al (2015) CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. ACS Synth Biol 4:1226

    Article  PubMed  CAS  Google Scholar 

  • Meadows AL et al (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164:1185–1197

    Article  PubMed  CAS  Google Scholar 

  • Ro DK et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MS, Choksi A, Smolke CD (2015) A system for multi-locus chromosomal integration and transformation-free selection marker rescue. FEMS Yeast Res 14:1171–1185

    Article  CAS  Google Scholar 

  • Storici F, Durham CL, Gordenin DA, Resnick MA (2003) Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci USA 100:14994–14999

    Article  PubMed  CAS  Google Scholar 

  • Swiat MA, Dashko S, Den RM, Wijsman M, van der Oost J, Daran JM, Daran-Lapujade P (2017) FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 45:12585–12598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, Roubos JA (2018) CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast 35:201–211. https://doi.org/10.1002/yea.3278

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Liu M, Lv X, Lu W, Gu J, Yu H (2013) Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111:125–133

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Ye L, Lv X, Xu H, Yu H (2015) Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28:8

    Article  PubMed  CAS  Google Scholar 

  • Zetsche et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zetsche B et al (2017) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35:31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 31500043). The authors sincerely thank Prof. Hongwei Yu (Zhejiang University) for providing plasmids of pESC-LEU-cen, pESC-URA, pMRI-34-crtE-tHMG1, pMRI-35-crtYB-crtI, pUMRI-15, and strain of S. cerevisiae BY4741.

Supporting information

Supplementary Fig. 1—Composition of the CRISPR arrays for singleplex, doubleplex, and tripleplex genome editing target sites.

Supplementary Fig. 2—Graphical depiction of the positions of the genomic target sites of the Gal1-7, Gal80, and HO for FnCpf1.

Supplementary Fig. 3—Pictures of transformants to determine the efficiency of targeted singleplex, doubleplex, and tripleplex genomic integration facilitated by FnCpf1. A: Pictures of transformants obtained by co-transforming donor DNA of MEL1 with plasmid expressing singleplex crRNA (Gal1-7_pos1, Gal1-7_pos2, and Gal1-7_pos3) or without crRNA plasmid (control1). B: Pictures of transformants obtained by co-transforming donor DNA of MEL1 and KanMX with plasmid expressing doubleplex crRNA array (Gal1-7_pos2 + Gal80_pos1, Gal1-7_pos2 + Gal80_pos2, and Gal1-7_pos2 + Gal-80_pos3) or without crRNA plasmid (control2). C: Pictures of transformants obtained by co-transforming donor DNA of crtI, crtYB, and tHMG1-crtE with plasmid expressing tripleplex crRNA array (Gal1-7_pos2 + Gal80_pos1 + HO_pos1, Gal1-7_pos2 + Gal80_pos1 + HO_pos2, and Gal1-7_pos2 + Gal80_pos1 + HO_pos3) or without crRNA plasmid (control3).

Supplementary Table 1—Primers and oligonucleotides used in this study.

Supplementary Table 2—Donor DNA flank and expression cassette sequences.

Supplementary Table 3—Synthesized DNA fragments in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Qing Wang or Dong-Zhi Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZH., Liu, M., Wang, FQ. et al. Cpf1-assisted efficient genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae. Biotechnol Lett 40, 1253–1261 (2018). https://doi.org/10.1007/s10529-018-2574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2574-8

Keywords