Skip to main content

Advertisement

Log in

Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers’ community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel K, deSchmertzing H, Peterson J (1963) Classification of microorganisms by analysis of chemical composition I. Feasibility of utilizing gas chromatography. J Bacteriol 85:1039–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:800

    Article  CAS  Google Scholar 

  • Alcantara R, Amores J, Lt Canoira, Fidalgo E, Franco M, Navarro A (2000) Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenerg 18:515–527

    Article  CAS  Google Scholar 

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz G (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Azad A, Yousuf A, Ferdoush A, Hasan MM, Karim MR (2014) Production of microbial lipids from rice straw hydrolysates by Lipomyces starkeyi for biodiesel synthesis. J Microb Biochem Technol S 8:2

    Google Scholar 

  • Backhaus K, Rippert D, Heilmann CJ, Sorgo AG, de Koster CG, Klis FM, Rodicio R, Heinisch JJ (2013) Mutations in SNF1 complex genes affect yeast cell wall strength. Eur J Cell Biol 92:383–395

    Article  CAS  PubMed  Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A Rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436

    Article  CAS  Google Scholar 

  • Canakci M, Van Gerpen J (2003) A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans ASAE 46:945–954

    CAS  Google Scholar 

  • Carrapiso AI, García C (2000) Development in lipid analysis: some new extraction techniques and in situ transesterification. Lipids 35:1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Charinpanitkul T, Soottitantawat A, Tanthapanichakoon W (2008) A simple method for bakers’ yeast cell disruption using a three-phase fluidized bed equipped with an agitator. Bioresour Technol 99:8935–8939

    Article  CAS  PubMed  Google Scholar 

  • Cheirsilp B, Louhasakul Y (2013) Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour Technol 142:329–337

    Article  CAS  PubMed  Google Scholar 

  • Chen W-F, Huang S-Y, Liao C-Y, Sung C-S, Chen J-Y, Wen Z-H (2015) The use of the antimicrobial peptide piscidin (PCD)-1 as a novel anti-nociceptive agent. Biomaterials 53:1–11

    Article  PubMed  Google Scholar 

  • Chin H, Shen T, Su H, Ding S (2006) Schizochytrium limacinum SR-21 as a source of docosahexaenoic acid: optimal growth and use as a dietary supplement for laying hens. Crop Pasture Sci 57:13–20

    Article  CAS  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103:296–304

    Article  PubMed  Google Scholar 

  • Ehimen E, Sun Z, Carrington C (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684

    Article  CAS  Google Scholar 

  • Eller FJ, King JW (1996) Determination of fat content in foods by analytical SFE. Semin Food Anal 1:145–162

    CAS  Google Scholar 

  • Freedman B, Pryde E, Mounts T (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    Article  CAS  Google Scholar 

  • Garoma T, Shackelford T (2014) Electroporation of Chlorella vulgaris to enhance biomethane production. Bioresour Technol 169:778–783

    Article  CAS  PubMed  Google Scholar 

  • Geng T, Zhan Y, Wang H-Y, Witting SR, Cornetta KG, Lu C (2010) Flow-through electroporation based on constant voltage for large-volume transfection of cells. J Control Release 144:91–100

    Article  CAS  PubMed  Google Scholar 

  • Gursong Y, Youngmin Y, Jong-Hee K, Cornelius D, Sanjiv KM, Kwanyong P, Min SP, Sung Gap I, Ji-Won Y (2014) An effective, cost-efficient extraction method of biomass from wet microalgae with a functional polymeric membrane. Green Chem 16:312–319

    Article  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012a) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012b) Microalgal cell disruption for biofuel development. Appl Energ 91:116–121

    Article  CAS  Google Scholar 

  • Hidalgo P, Toro C, Navia R (2013) Advances in direct transesterification of microalgal biomass for biodiesel production. Rev Environ Sci Biotechnol 12:179–199

    Article  CAS  Google Scholar 

  • Huang W-C, Kim J-D (2013) Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour Technol 149:579–581

    Article  CAS  PubMed  Google Scholar 

  • Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52:381–390

    Article  PubMed  Google Scholar 

  • Joshi R, Schoenbach K (2000) Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: a numerical simulation study. Phys Rev E 62:1025

    Article  CAS  Google Scholar 

  • Kakkad H, Khot M, Zinjarde S, RaviKumar A (2015) Biodiesel production by direct in situ transesterification of an oleaginous tropical mangrove fungus grown on untreated agro-residues and evaluation of its fuel properties. Bioenerg Res 8(4):1788–1799

    Article  CAS  Google Scholar 

  • Kotnik T, Frey W, Sack M, Haberl Meglič S, Peterka M, Miklavčič D (2015) Electroporation-based applications in biotechnology. Trends Biotechnol 33:480–488

    Article  CAS  PubMed  Google Scholar 

  • Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    Article  CAS  PubMed  Google Scholar 

  • Lauth X, Shike H, Burns JC, Westerman ME, Ostland VE, Carlberg JM, Van Olst JC, Nizet V, Taylor SW, Shimizu C (2002) Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J Biol Chem 277:5030–5039

    Article  CAS  PubMed  Google Scholar 

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116

    Article  CAS  PubMed  Google Scholar 

  • Lim CSY, Tung CH, Rosli R, Chong PP (2008) An alternative Candida spp. cell wall disruption method using a basic sorbitol lysis buffer and glass beads. J Microbiol Methods 75:576–578

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-C, Huang M-Y (2001) Electroporation microchips for in vitro gene transfection. J Micromech Microeng 11:542

    Article  CAS  Google Scholar 

  • Lindmark J (2013) The biogas optimization project. Mälardalen University, Västerås

    Google Scholar 

  • Liu B, Zhao ZK (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780

    Article  CAS  Google Scholar 

  • Matsakas L, Sterioti A-A, Rova U, Christakopoulos P (2014) Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807. Ind Crop Prod 62:367–372

    Article  CAS  Google Scholar 

  • McGavin J, Sudheendra US, Baxter M, Seckute J, Nicholson L, Cotten M (2010) Determining the charge state of histidine side chains in antimicrobial piscidin by nuclear magnetic resonance. Biophys J 98:84a

    Article  Google Scholar 

  • Meesters P, Huijberts G, Eggink G (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579

    Article  CAS  Google Scholar 

  • Nelson DR (2010) Transesterification and recovery of intracellular lipids using a single step reactive extraction. Utah State University, Logan

    Google Scholar 

  • Özgül-Yücel S, Türkay S (2002) Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. J Am Oil Chem Soc 79:611–614

    Article  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Tech 21:83

    Article  CAS  Google Scholar 

  • Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2007) Lipid production by oleaginous mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol 109:1060–1070

    Article  CAS  Google Scholar 

  • Pare JJ, Matni G, Belanger JM, Li K, Rule C, Thibert B, Yaylayan V, Liu Z, Mathe D, Jacquault P (1997) Use of the microwave-assisted process in extraction of fat from meat, dairy, and egg products under atmospheric pressure conditions. J AOAC Int 80:928–933

    CAS  PubMed  Google Scholar 

  • Park J-Y, Park MS, Lee Y-C, Yang J-W (2015) Advances in direct transesterification of algal oils from wet biomass. Bioresour Technol 184:267–275

    Article  CAS  PubMed  Google Scholar 

  • Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28:197–202

    Article  CAS  PubMed  Google Scholar 

  • Pirozzi D, Yousuf A, Zuccaro G, Aruta R, Sannino F, Fava F, Gavrilescu M (2012) Synthesis of biodiesel from hydrolyzates of Arundo donax. Environ Eng Manag J 11:1797–1801

    CAS  Google Scholar 

  • Randolph TW (1990) Supercritical fluid extractions in biotechnology. Trends Biotechnol 8:78–82

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Schwab A, Bagby M, Freedman B (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372–1378

    Article  CAS  Google Scholar 

  • Siddique M, Islam N, Zularisam AW (2014) Sustainable bio-methane generation from petrochemical wastewater using CSTR. Int J Eng Technol Sci 1:1–4

    Article  Google Scholar 

  • Smith VJ, Desbois AP, Dyrynda EA (2010) Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 8:1213–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukharev S, Klenchin V, Serov S, Chernomordik L, YuA C (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente G, Martınez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:297–305

    Article  CAS  PubMed  Google Scholar 

  • Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang J, Xu R, Fang Z, Liu A (2014) Oil production by the oleaginous yeast Lipomyces starkeyi using diverse carbon sources. BioResources 9:7027–7040

    Google Scholar 

  • Wenger MD, DePhillips P, Bracewell DG (2008) A microscale yeast cell disruption technique for integrated process development strategies. Biotechnol Prog 24:606–614

    Article  CAS  PubMed  Google Scholar 

  • Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Wild R, Patil S, Popović M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotechnol 48:329–335

    CAS  Google Scholar 

  • Wu S-T, Yu S-T, Lin L-P (2005) Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem 40:3103–3108

    Article  CAS  Google Scholar 

  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhao X, Shen H, Wang Q, Zhao ZK (2011) Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102:1803–1807

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Yu X, Hu A, Zhang L, Jin Y, Abid M (2015) Ultrasonic disruption of yeast cells: underlying mechanism and effects of processing parameters. Innov Food Sci Emerg Technol 28:59–65

    Article  CAS  Google Scholar 

  • Yousuf A (2010) Conversion of agro-industrial wastes into lipids suitable for biodiesel production. Università degli Studi di Napoli Federico II, Naples

    Google Scholar 

  • Yousuf A (2012) Biodiesel from lignocellulosic biomass-prospects and challenges. Waste Manag 32:2061–2067

    Article  CAS  PubMed  Google Scholar 

  • Yousuf A, Sannino F, Addorisio V, Pirozzi D (2010) Microbial conversion of olive oil mill wastewaters into lipids suitable for biodiesel production. J Agric Food Chem 58:8630–8635

    Article  CAS  PubMed  Google Scholar 

  • Yousuf A, Hoque M, Jahan MA, Pirozzi D (2012) Technology and engineering of biodiesel production: a comparative study between microalgae and other non-photosynthetic oleaginous microbes. 4th CEAM 2012-Virtual. Forum 2012:624

    Google Scholar 

  • Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134–6140

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zong M, Wu H (2008) Efficient lipid production with Trichosporonfermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to the University Malaysia Pahang, Malaysia for supporting this research under the project RDU1403148 and GRS150371.

Supporting information

Supplementary Table 1—Nutrient sources and lipid content of oleaginous yeast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Yousuf.

Ethics declarations

Conflict of Interest

All Authors declare that we have no conflict of interest.

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousuf, A., Khan, M.R., Islam, M.A. et al. Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis. Biotechnol Lett 39, 13–23 (2017). https://doi.org/10.1007/s10529-016-2217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2217-x

Keywords

Navigation