Skip to main content

Advertisement

Log in

Recent developments in biocatalysis beyond the laboratory

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Recent developments in biocatalysis, where implementation beyond the laboratory has been demonstrated, are explored: the use of transglutaminases to modify foods, reduce allergenicity and produce advanced materials, lipases for biodiesel production, and transaminases for biochemical production. The availability and application of enzymes at pilot and larger scale opens up possibilities for further improvements of biocatalyst-based processes and the development of new processes. Enzyme production, stability, activity, re-use, and product retrieval are common challenges for biocatalytic processes. We explore recent advances in biocatalysis within the process chain, such as protein engineering, enzyme expression, and biocatalyst immobilization, in the context of these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi D, Koh F, Hama S, Ogino C, Kondo A (2013) A robust whole-cell biocatalyst that introduces a thermo- and solvent-tolerant lipase into Aspergillus oryzae cells: characterization and application to enzymatic biodiesel production. Enzym Microb Technol 52:331–335

    Article  CAS  Google Scholar 

  • Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan JM (ed) Methods in biotechnology: immobilization of enzymes and cells, vol 22, 2nd edn. Humana Press Inc, Totowa

    Google Scholar 

  • Buettner K, Hertel TC, Pietzsch M (2012) Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis. Amino Acids 42:987–996

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Sen R (2013) Development of a novel integrated continuous reactor system for biocatalytic production of biodiesel. Bioresour Technol 147:395–400

    Article  CAS  PubMed  Google Scholar 

  • Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520

    Article  CAS  Google Scholar 

  • Clare DA, Daubert CR (2011) Expanded functionality of modified whey protein dispersions after transglutaminase catalysis. J Food Sci 76:C576–C584

    Article  CAS  PubMed  Google Scholar 

  • Dach R, Song JHJ, Roschangar F, Samstag W, Senanayake CH (2012) The eight criteria defining a good chemical manufacturing process. Org Process Res Dev 16:1697–1706

    Article  CAS  Google Scholar 

  • de Goes-Favoni S, Bueno FR (2014) Microbial transglutaminase: general characteristics and performance in food processing technology. Food Biotechnol 28:1–24

    Article  Google Scholar 

  • De Jong GAH, Koppelman SJ (2002) Transglutaminase catalyzed reactions: impact on food applications. J Food Sci 67:2798–2806

    Article  Google Scholar 

  • Di Pierro P, Rossi Marquez G, Mariniello L, Sorrentino A, Villalonga R, Porta R (2013) Effect of transglutaminase on the mechanical and barrier properties of whey protein/pectin films prepared at complexation pH. J Agr Food Chem 61:4593–4598

    Article  Google Scholar 

  • Dunn PJ (2012) The importance of green chemistry in process research and development. Chem Soc Rev 41(4):1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Erickson DP, Campanella OH, Hamaker BR (2012) Functionalizing maize zein in viscoelastic dough systems through fibrous, beta-sheet-rich protein networks: an alternative, physicochemical approach to gluten-free breadmaking. Trends Food Sci Technol 24:74–81

    Article  CAS  Google Scholar 

  • Frodsham L, Golden M, Hard S, Kenworthy MN, Klauber DJ, Leslie K, Macleod C, Meadows RE, Mulholland KR, Reilly J, Squire C, Tomasi S, Watt D, Wells AS (2013) Use of omega-transaminase enzyme chemistry in the synthesis of a JAK2 kinase inhibitor. Org Process Res Dev 17:1123–1130

    Article  CAS  Google Scholar 

  • Gerrard JA, Fayle SE, Brown PA, Sutton KH, Simmons L, Rasiah I (2001) Effects of microbial transglutaminase on the wheat proteins of bread and croissant dough. J Food Sci 66:782–786

    Article  CAS  Google Scholar 

  • Giosafatto CVL, Rigby NM, Wellner N, Ridout M, Husband F, Mackie AR (2012) Microbial transglutaminase-mediated modification of ovalbumin. Food Hydrocoll 26:261–267

    Article  CAS  Google Scholar 

  • Girardin M, Ouellet SG, Gauvreau D, Moore JC, Hughes G, Devine PN, O’shea PD, Campeau LC (2013) Convergent kilogram-scale synthesis of dual orexin receptor antagonist. Org Process Res Dev 17:61–68

    Article  CAS  Google Scholar 

  • Gog A, Roman M, Tos M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification—current state and perspectives. Renew Energy 39:10–16

    Article  CAS  Google Scholar 

  • Green AP, Turner NJ, O’Reilly E (2014) Chiral amine synthesis using omega-transaminases: an amine donor that displaces equilibria and enables high-throughput screening. Angew Chem Int Ed Engl 53:10714–10717

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Kondo A (2013) Enzymatic biodiesel production: an overview of potential feedstocks and process development. Bioresour Technol 135:386–395

    Article  CAS  PubMed  Google Scholar 

  • Han LH, Cheng YQ, Qiu S, Tatsumi E, Shen Q, Lu ZH, Li LT (2013) The effects of vital wheat gluten and transglutaminase on the thermomechanical and dynamic rheological properties of buckwheat dough. Food Bioprocess Technol 6:561–569

    Article  CAS  Google Scholar 

  • Heredia-Sandoval NG, Islas-Rubio AR, Cabrera-Chavez F, De la Barca AMC (2014) Transamidation of gluten proteins during the bread-making process of wheat flour to produce breads with less immunoreactive gluten. Food Funct 5:1813–1818

    Article  CAS  PubMed  Google Scholar 

  • Hervé G, Agneta F, Yves D (2011) Biofuels and World Agricultural Markets: outlook for 2020 and 2050. In: Bernardes MADS (ed) Economic effects of biofuel production. doi: 10.5772/20581 InTech, Rijeka

  • Huang J, Xia J, Yang Z, Guan F, Cui D, Guan G, Jiang W, Li Y (2014) Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel. Biotechnol Biofuels 7:111

    Article  PubMed Central  PubMed  Google Scholar 

  • Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17:284–292

    Article  CAS  PubMed  Google Scholar 

  • Hwang BY, Kim BG (2004) High-throughput screening method for the identification of active and enantioselective omega-transaminases. Enzyme Micro Technol 34:429–436

    Article  CAS  Google Scholar 

  • Hwang YT, Qi F, Yuan C, Zhao X, Ramkrishna D, Liu D, Varma A (2014) Lipase catalyzed process for biodiesel production: protein engineering and lipase production. Biotechnol Bioeng 111:639–653

    Article  CAS  PubMed  Google Scholar 

  • Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Bioresour Technol 115:48–57

    Article  CAS  PubMed  Google Scholar 

  • James J, Simpson BK (1996) Application of enzymes in food processing. Crit Rev Food Sci Nutr 36:437–463

    Article  CAS  PubMed  Google Scholar 

  • Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production: a literature review. J Cleaner Prod 42:228–240

    Article  CAS  Google Scholar 

  • Jin Z, Han SY, Zhang L, Zheng SP, Wang Y, Lin Y (2013) Combined utilization of lipase displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co solvent media. Bioresour Technol 130:102–109

    Article  CAS  PubMed  Google Scholar 

  • Kanaji T, Ozaki H, Takano T, Ide H, Motoki M, Shimonishi Y (1993) Primary structure of microbial transglutaminase from Streptoverticillium sp. strain S-8112. J Biol Chem 268:11565–11572

    CAS  PubMed  Google Scholar 

  • Kieliszek M, Misiewicz A (2014) Microbial transglutaminase and its application in the food industry: a review. Folia Microbiol 59:241–250

    Article  CAS  Google Scholar 

  • Kohls H, Steffen-Munsberg F, Hohne M (2014) Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis. Curr Opin Chem Biol 19:180–192

    Article  CAS  PubMed  Google Scholar 

  • Korman TP, Sahachartsiri B, Charbonneau DM, Huang GL, Beauregard M, Bowie JU (2013) Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnol Biofuels 6:70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kroutil W, Fischereder EM, Fuchs CS, Lechner H, Mutti FG, Pressnitz D, Rajagopalan A, Sattler JH, Simon RC, Siirola E (2013) Asymmetric preparation of prim-, sec-, and tert-amines employing selected biocatalysts. Org Process Res Dev 17(5):751–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Food Rev Int 17:221–246

    Article  CAS  Google Scholar 

  • Lee M, Lee D, Cho J, Kim S, Park C (2013) Enzymatic biodiesel synthesis in semi-pilot continuous process in near-critical carbon dioxide. Appl Biochem Biotechnol 171:1118–1127

    Article  CAS  PubMed  Google Scholar 

  • Lim TJ, Easa A-M, Karim A-A, Bhat R, Liong M-T (2011) Development of soy-based cream cheese via the addition of microbial transglutaminase, soy protein isolate and maltodextrin. Br Food J 113:1147–1172

    Article  Google Scholar 

  • Lv Y, Lin Z, Tan T, Svec F (2014) Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles. Biotechnol Bioeng 111:50–58

    Article  CAS  PubMed  Google Scholar 

  • Mangion IK, Sherry BD, Yin J, Fleitz FJ (2012) Enantioselective synthesis of a dual orexin receptor antagonist. Org Lett 14:3458–3461

    Article  CAS  PubMed  Google Scholar 

  • Markets and Markets (2013) Food enzymes market by types (carbohydrase, protease, lipase), applications (beverages, dairy, bakery), sources (microorganisms, plants, animals), and geography—Global trends and forecasts to, 2018, vol FB 1264. Markets and Markets, Dallas

    Google Scholar 

  • Martins IM, Matos M, Costa R, Silva F, Pascoal A, Estevinho LM, Choupina AB (2014) Transglutamineses: recent achievements and new sources. Appl Microbiol Biotechnol 98:6957–6964

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Shin G, Shon M, Yun H (2013) High throughput screening methods for ω-transaminases. Biotech Bioprocess Eng 18:1–7

    Article  CAS  Google Scholar 

  • Meadows RE, Mulholland KR, Schurmann M, Golden M, Kierkels H, Meulenbroeks E, Mink D, May O, Squire C, Straatman H, Wells AS (2013) Efficient synthesis of (S)-1-(5-Fluoropyrimidin-2-yl)ethylamine using an omega-transaminase biocatalyst in a two-phase system. Org Process Res Dev 17:1117–1122

    Article  CAS  Google Scholar 

  • Midelfort KS, Kumar R, Han S, Karmilowicz MJ, McConnell K, Gehlhaar DK, Mistry A, Chang JS, Anderson M, Villalobos A, Minshull J, Govindarajan S, Wong JW (2013) Redesigning and characterizing the substrate specificity and activity of Vibrio fluvialis aminotransferase for the synthesis of imagabalin. Protein Eng Des Sel 26:25–33

    Article  CAS  PubMed  Google Scholar 

  • Nestl BM, Nebel BA, Hauer B (2011) Recent progress in industrial biocatalysis. Curr Opin Chem Biol 15:187–193

    Article  CAS  PubMed  Google Scholar 

  • Nestl BM, Hammer SC, Nebel BA, Hauer B (2014) New generation of biocatalysts for organic synthesis. Angew Chem Int Ed Engl 53:3070–3095

    Article  CAS  PubMed  Google Scholar 

  • Ngo TPN, Li A, Tiew KW, Li Z (2013) Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour Technol 145:233–239

    Article  CAS  PubMed  Google Scholar 

  • Olivier CE, Lima RP, Pinto DG, Santos RA, Silva GK, Lorena SL, Villas-Boas MB, Netto FM, Zollner Rde L (2012) In search of a tolerance-induction strategy for cow’s milk allergies: significant reduction of beta-lactoglobulin allergenicity via transglutaminase/cysteine polymerization. Clinics 67:1171–1179

    Article  PubMed Central  PubMed  Google Scholar 

  • Peng X (2013) Improved thermostability of lipase B from Candida antarctica by directed evolution and display on yeast surface. Appl Biochem Biotechnol 169:351–358

    Article  CAS  PubMed  Google Scholar 

  • Rachel NM, Pelletier JN (2013) Biotechnological applications of transglutaminases. Biomolecules 3:870–888

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramos OS, Malcata FX (2011) Food-grade enzymes. In: Moo-Young M, Butler M, Webb BC et al (eds) Comprehensive Biotechnology. Academic Press, Burlington

    Google Scholar 

  • Renzetti S, Behr J, Vogel RF, Barbiroli A, Iametti S, Bonomi F, Arendt EK (2012) Transglutaminase treatment of brown rice flour: a chromatographic, electrophoretic and spectroscopic study of protein modifications. Food Chem 131:1076–1085

    Article  CAS  Google Scholar 

  • Rouhi AM (2004) Chiral chemistry: traditional methods thrive despite numerous hurdles, including tough luck, slow commercialization of catalytic processes. Chem Eng News 82:47–62

    Article  Google Scholar 

  • Rudat J, Brucher BR, Syldatk C (2012) Transaminases for the synthesis of enantiopure beta-amino acids. AMB Express 2:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309

    Article  CAS  PubMed  Google Scholar 

  • Schoenlechner R, Szatmari M, Bagdi A, Tomoskozi S (2013) Optimisation of bread quality produced from wheat and proso millet (Panicum miliaceum L.) by adding emulsifiers, transglutaminase and xylanase. Lwt-Food Sci Technol 51:361–366

    Article  CAS  Google Scholar 

  • Seo JH, Kyung D, Joo K, Lee J, Kim BG (2011) Necessary and sufficient conditions for the asymmetric synthesis of chiral amines using omega-aminotransferases. Biotechnol Bioeng 108:253–263

    Article  CAS  PubMed  Google Scholar 

  • Simon RC, Mutti FG, Kroutil W (2013) Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals. Drug Discov Today Technol 10:e37–e44

    Article  PubMed  Google Scholar 

  • Smerdel B, Pollak L, Novotni D, Cukelj N, Benkovic M, Lusic D, Curic D (2012) Improvement of gluten-free bread quality using transglutaminase, various extruded flours and protein isolates. J Food Nut Res 51:242–253

    CAS  Google Scholar 

  • Stangierski J, Rezler R, Lesnierowski G (2014) Analysis of the effect of heating on rheological attributes of washed mechanically recovered chicken meat modified with transglutaminase. J Food Eng 141:13–19

    Article  CAS  Google Scholar 

  • Svedendahl M, Branneby C, Lindberg L, Berglund P (2010) Reversed enantiopreference of an omega-transaminase by a single-point mutation. Chemcatchem 2:976–980

    Article  CAS  Google Scholar 

  • Truppo MD, Rozzell JD, Turner NJ (2010) Efficient production of enantiomerically pure chiral amines at concentrations of 50 g/L using transaminases. Org Process Res Dev 14:234–237

    Article  CAS  Google Scholar 

  • Truppo MD, Strotman H, Hughes G (2012) Development of an immobilized transaminase capable of operating in organic solvent. ChemCatChem 4:1071–1074

    Article  CAS  Google Scholar 

  • Tufvesson P, Lima-Ramos J, Jensen JS, Al-Haque N, Neto W, Woodley JM (2011) Process considerations for the asymmetric synthesis of chiral amines using transaminases. Biotechnol Bioeng 108:1479–1493

    Article  CAS  PubMed  Google Scholar 

  • Woodley JM (2013) Protein engineering of enzymes for process applications. Curr Opin Chem Biol 17:310–316

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, An J, Yang G, Wu G, Zhan Y, Cui L, Feng Y (2014) Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem 289:7994–8006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan J, Zheng X, Du L, Li S (2014) Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts. Biotechnol Biofuels 7:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Yew SE, Lim TJ, Lew LC, Bhat R, Mat-Easa A, Liong MT (2011) Development of a probiotic delivery system from agrowastes, soy protein isolate, and microbial transglutaminase. J Food Sci 76:H108–H115

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Utsumi H, Nakamura T, Ogaya D, Shimba N, Suzuki E, Taguchi S (2010) Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis. Appl Microbiol Biotechnol 87:2087–2096

    Article  CAS  PubMed  Google Scholar 

  • Yu XW, Tan NJ, Xiao R, Xu Y (2012a) Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity. Plos one 7:e46388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu XW, Wang R, Zhang M, Xu Y, Xiao R (2012b) Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris. Microb Cell Fact 11:1–11

    Article  Google Scholar 

  • Zhang D, Zhu Y, Chen J (2009) Microbial transglutaminase production: understanding the mechanism. Biotechnol Gen Eng Rev 26:205–222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jasmina Nikodinovic-Runic is partially funded by the Ministry of Education, Science and Technological Development of Serbia Project 173048. Tanja Narancic is funded by the EC FP7 project SYNPOL (311815); Reeta Davis is funded by Science Foundation Ireland AMBER centre (12/RC/2278). Authors acknowledge the Systems Biocatalysis COST Action CM1303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin E. O’ Connor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narancic, T., Davis, R., Nikodinovic-Runic, J. et al. Recent developments in biocatalysis beyond the laboratory. Biotechnol Lett 37, 943–954 (2015). https://doi.org/10.1007/s10529-014-1762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1762-4

Keywords

Navigation