Skip to main content
Log in

Technology developments in biological tools for targeted genome surgery

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Different biological tools for targeted genome engineering have recently appeared and these include tools like meganucleases, zinc-finger nucleases and newer technologies including TALENs and CRISPR/Cas systems. transcription activator-like effector nucleases (TALENs) have greatly improved genome editing efficiency by making site-specific DNA double-strand breaks. Several studies have shown the prominence of TALENs in comparison to the meganucleases and zinc-finger nucleases. The most important feature of TALENs that makes them suitable tools for targeted genome editing is the modularity of central repeat domains, meaning that they can be designed to recognize any desirable DNA sequence. In this review, we present a comprehensive and concise description of TALENs technology developments for targeted genome surgery with to the point description and comparison of other tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker M (2012) Gene-editing nucleases. Nat Methods 9:23–26

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Bedell VM, Wang Y, Campbell JM, Poshusta TL et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA 95:10570–10575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Briggs AW, Rios X, Chari R, Yang L et al (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acid Res 40:e117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  CAS  PubMed  Google Scholar 

  • Bultmann S, Morbitzer R, Schmidt CS, Thanisch K et al (2012) Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acid Res 40:5368–5377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cade L, Reyon D, Hwang WY, Tsai SQ et al (2012) Highly efficient generation of heritable zebrafish gene mutations using homo-and heterodimeric TALENs. Nucleic Acid Res 40:8001–8010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlson DF et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109:17382–17387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Check E (2002) A tragic setback. Nature 420:116–118

    Article  CAS  PubMed  Google Scholar 

  • Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acid Res 29:3757–3774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968

    Article  PubMed Central  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng D, Yan C, Pan X, Mahfouz M et al (2012a) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng D, Yin P, Yan C, Pan X et al (2012b) Recognition of methylated DNA by TAL effectors. Cell Res 22:1502–1504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Lee YK, Schaefer EA, Peters DT et al (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle EL, Hummel AW, Demorest ZL, Starker CG et al (2013) TAL effector specificity for base 0 of the DNA target is altered in a complex, effector-and assay-dependent manner by substitutions for the tryptophan in cryptic repeat–1. PLoS ONE 8:e82120

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao H, Wu X, Chai J, Han Z (2012) Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res 22:1716–1720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garneau JE, Dupuis M-È, Villion M, Romero DA et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:E2579–E2586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geurts AM, Moreno C (2010) Zinc-finger nucleases: new strategies to target the rat genome. Clin Sci (Lond) 119:303–311

    Article  CAS  Google Scholar 

  • Guilinger JP, Pattanayak V, Reyon D, Tsai SQ et al (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 4:429–435

    Article  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Jensen NM, Dalsgaard T, Jakobsen M, Nielsen RR et al (2011) An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci 18:10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Levasseur DN, Ryan TM, Pawlik KM, Townes TM (2003) Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood 102:4312–4319

    Article  CAS  PubMed  Google Scholar 

  • Li T, Huang S, Jiang WZ, Wright D et al (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acid Res 39:359–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Li T et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas CF 3rd (2014) Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS ONE 9:e85755

    Article  PubMed Central  PubMed  Google Scholar 

  • Maeder ML, Linder SJ, Reyon D, Angstman JF et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10:243–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahfouz MM, Li L, Piatek M, Fang X et al (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Molec Biol 78:311–321

    Article  CAS  Google Scholar 

  • Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G (2010) Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 67:727–748

    Article  CAS  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsubara Y, Chiba T, Kashimada K, Morio T et al (2014) Transcription activator-like effector nuclease-mediated transduction of exogenous gene into IL2RG locus. Sci Rep 4:5043

    Article  PubMed Central  PubMed  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Morbitzer R, Romer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci USA 107:21617–21622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muñoz Bodnar A, Bernal A, Szurek B, López CE (2013) Tell me a tale of TALEs. Mol Biotechnol 53:228–235

    Article  PubMed  Google Scholar 

  • Mussolino C, Morbitzer R, Lütge F, Dannemann N et al (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acid Res 39:9283–9293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8:765–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pauwels K, Podevin N, Breyer D, Carroll D, Herman P (2013) Engineering nucleases for gene targeting: safety and regulatory considerations. New Biotechnol 31:18–27

    Article  Google Scholar 

  • Perez-Pinera P, Ousterout DG, Gersbach CA (2012) Advances in targeted genome editing. Curr Opin Chem Biol 16:268–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramirez CL, Foley JE, Wright DA, Muller-Lerch F et al (2008) Unexpected failure rates for modular assembly of engineered zinc-fingers. Nat Methods 5:374–375

    Article  CAS  PubMed  Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS et al (2013a) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  PubMed  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013b) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reyon D, Maeder ML, Khayter C, Tsai SQ et al (2013) Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly. Curr Protoc Mol Biol 12:12–16

    Google Scholar 

  • Rogers CS et al (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321:1837–1841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sander JD, Cade L, Khayter C, Reyon D et al (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmid-Burgk JL, Xie Z, Frank S, Virreira Winter S et al (2012) Rapid hierarchical assembly of medium-size DNA cassettes. Nucleic Acid Res 40:e92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31:76–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen BW, Landthaler M, Shub DA, Stoddard BL (2004) DNA binding and cleavage by the HNH homing endonuclease I-HmuI. J Mol Biol 342:43–56

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S et al (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc-finger DNA-recognition domains. Nucleic Acids Res 28:3361–3369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Han L, Zhao Z (2011) Conservation and divergence of DNA methylation in eukaryotes: new insights from single base-resolution DNA methylomes. Epigenetics 6:134–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun N, Zhao H (2014) A single-chain TALEN architecture for genome engineering. Molec BioSyst 10:446–453

    Article  CAS  Google Scholar 

  • Valton J, Dupuy A, Daboussi F, Thomas S et al (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS ONE 6:e19722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White FF, Potnis N, Jones JB, Koebnik R (2009) The type III effectors of Xanthomonas. Mol Plant Pathol 10:749–766

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Smith C, Cheng L (2013) Expanded activity of dimer nucleases by combining ZFN and TALEN for genome editing. Sci Rep 3:2376

    PubMed Central  PubMed  Google Scholar 

  • Yasue A, Mitsui SN, Watanabe T, Sakuma T et al (2014) Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems. Sci Rep 4:5705

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate Prof. Dirk Roos for critically reading the manuscript.

Conflict of interest

Authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Teimourian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teimourian, S., Abdollahzadeh, R. Technology developments in biological tools for targeted genome surgery. Biotechnol Lett 37, 29–39 (2015). https://doi.org/10.1007/s10529-014-1656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1656-5

Keywords

Navigation