Skip to main content
Log in

Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The effect of the conjugated bile acid (BA) on the microbial internal pH (pHin) values in lactic acid bacteria with and without ability to hydrolyze bile salts (BSH[+] and BSH[−] strains, respectively) was evaluated. BSH(+) strains showed a gradual increase in the pHin following the addition of conjugated BA; this behavior was more pronounced with GDCA than with TDCA may be due to the higher affinity of BSH for the glyco-conjugates acids. Conversely, the BSH(−) strains showed a decrease in internal pH probably as a consequence of weak acid accumulation. As expected, a decrease in the cytoplasmatic pH affected the cell survival in this last group of strains, while the BSH(+) strains were more resistant to the toxic effect of BA.

Purpose of work

To evaluate bile salt hydrolase activities, changes in the internal pH and cell survival to bile acids in lactic acid bacteria to establish the relationship between these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Begley M, Sleator RD, Gahan CG, Hill C (2005) Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun 73:894–904

    Article  PubMed  CAS  Google Scholar 

  • Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    Article  PubMed  CAS  Google Scholar 

  • Bixquert JM (2009) Treatment of irritable bowel syndrome with probiotics. An etiopathogenic approach at last? Rev Esp Enferm Dig 101:553–564

    Google Scholar 

  • Bustos AY, Raya R, de Valdez GF, Taranto MP (2011) Efflux of bile acids in Lactobacillus reuteri is mediated by ATP. Biotechnol Lett 33:2265–2269

    Article  PubMed  CAS  Google Scholar 

  • Church FC (1985) An o-phthalaldehyde spectrophotometric assay for proteolytic enzymes. Prog Clin Biol Res 180:303–305

    PubMed  CAS  Google Scholar 

  • de Moreno de Leblanc A et al (2011) Importance of IL-10 modulation by probiotic microorganisms in gastrointestinal inflammatory diseases. ISRN Gastroenterol 2011:892971. doi:10.5402/2011/892971

    PubMed  Google Scholar 

  • De Smet I, Van Hoorde L, Vande Woestyne M, Christiaens H, Verstraete W (1995) Significance of bile salt hydrolytic activities of lactobacilli. J Appl Bacteriol 79:292–301

    Article  PubMed  Google Scholar 

  • Dussurget O et al (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Elkins CA, Mullis LB (2004) Bile-mediated aminoglycoside sensitivity in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid. Appl Environ Microbiol 70:7200–7209

    Article  PubMed  CAS  Google Scholar 

  • Fang F et al (2009) Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels. J Bacteriol 191:5743–5757

    Article  PubMed  CAS  Google Scholar 

  • FAO/WHO (2002) Drafting guidelines for the evaluation of probiotics in foods. Report of a Joint FAO/WHO Working Group, London, Ontario, Canada. http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Retrieved 30 April 2002 and May 1 2002

  • Grill JP, Perrin S, Schneider F (2000) Bile salt toxicity to some bifidobacteria strains: role of conjugated bile salt hydrolase and pH. Can J Microbiol 46:878–884

    Article  PubMed  CAS  Google Scholar 

  • Hamon E et al (2012) Investigation of biomarkers of bile tolerance in Lactobacillus casei using comparative proteomics. J Proteome Res 11:109–118

    Article  PubMed  CAS  Google Scholar 

  • Hylemon PB, Stellwag EJ (1976) Bile acid biotransformation rates of selected gram-positive and gram-negative intestinal anaerobic bacteria. Biochem Biophys Res Commun 69:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Jensen H, Grimmer S, Naterstad K, Axelsson L (2012) In vitro testing of commercial and potential probiotic lactic acid bacteria. Int J Food Microbiol 153:216–222

    Article  PubMed  Google Scholar 

  • Kobayashi H, Suzuki T, Kinoshita N, Unemoto T (1984) Amplification of the Streptococcus faecalis proton-translocating ATPase by a decrease in cytoplasmic pH. J Bacteriol 158:1157–1160

    PubMed  CAS  Google Scholar 

  • Kurdi P, Tanaka H, Van Veen HW, Asano K, Tomita F, Yokota A (2003) Cholic acid accumulation and its diminution by short-chain fatty acids in bifidobacteria. Microbiology 149:2031–2037

    Article  PubMed  CAS  Google Scholar 

  • Kurdi P, Kawanishi K, Mizutani K, Yokota A (2006) Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188:1979–1986

    Article  PubMed  CAS  Google Scholar 

  • Lee J et al (2011) Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: immune modulation and longevity. Int J Food Microbiol 148:80–86

    Article  PubMed  CAS  Google Scholar 

  • Lundeen SG, Savage DC (1992) Characterization of an extracellular factor that stimulates bile salt hydrolase activity in Lactobacillus sp. strain 100-100. FEMS Microbiol Lett 73:121–126

    Article  PubMed  CAS  Google Scholar 

  • Masood MI, Qadir MI, Shirazi JH, Khan IU (2011) Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol 37:91–98

    Article  PubMed  Google Scholar 

  • McAuliffe O, Cano RJ, Klaenhammer TR (2005) Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:4925–4929

    Article  PubMed  CAS  Google Scholar 

  • Salmond CV, Kroll RG, Booth IR (1984) The effect of food preservatives on pH homeostasis in Escherichia coli. J Gen Microbiol 130:2845–2850

    PubMed  CAS  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79, 317. doi:10.1016/S0065-2911(09)05501-5

    Google Scholar 

  • Tanaka H, Doesburg K, Iwasaki T, Mierau I (1999) Screening of lactic acid bacteria for bile salt hydrolase activity. J Dairy Sci 82:2530–2535

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW, Dashkevicz MP, Feighner SD (1989) Lactobacilli and bile salt hydrolase in the murine intestinal tract. Appl Environ Microbiol 55:1848–1851

    PubMed  CAS  Google Scholar 

  • Taranto MP, Sesma F, Valdez GF (1999) Localization and primary characterization of bile salt hydrolase activity from Lactobacillus reuteri. Biotechnol Lett 21:935–938

    Article  CAS  Google Scholar 

  • Usman HA (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J Dairy Sci 82:243–248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants of CONICET, FONCyT and CIUNT from Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Pía Taranto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustos, A.Y., Saavedra, L., de Valdez, G.F. et al. Relationship between bile salt hydrolase activity, changes in the internal pH and tolerance to bile acids in lactic acid bacteria. Biotechnol Lett 34, 1511–1518 (2012). https://doi.org/10.1007/s10529-012-0932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0932-5

Keywords

Navigation