Skip to main content
Log in

Genetic manipulation in Bacillus thuringiensis for strain improvement

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Bt) has been used as a biopesticide in agriculture, forestry and mosquito control because of its advantages of specific toxicity against target insects, lack of polluting residues and safety to non-target organisms. The insecticidal properties of this bacterium are due to insecticidal proteins produced during sporulation. Despite these ecological benefits, the use of Bt biopesticides has lagged behind the synthetic chemicals. Genetic improvement of Bt natural strains, in particular Bt recombination, offers a promising means of improving efficacy and cost-effectiveness of Bt-based bioinsecticide products to develop new biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baum JA, Gilmer AJ, Mettus A-ML (1999) Multiple roles for TnpI recombinase in regulation of Tn5401 transposition in bacillus thuringiensis. J Bacteriol 181:6271–6277

    PubMed  CAS  Google Scholar 

  • Couesnon A, Pereira Y, Stiles BG, Popoff MR (2006) Toxin gene regulation. In: Gillet D, Johannes L (eds) Recent research developments in toxins from bacteria and other organisms. Research Signpost, Kerala, India, pp 35–68

    Google Scholar 

  • Delecluse A, Charles J-F, Klier A, Rapoport G (1991) Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J Bacteriol 173:3374–3381

    PubMed  CAS  Google Scholar 

  • Federici BA, Park H-W, Bideshi DK, Wirth MC, Johnson JJ (2003) Recombinant bacteria for mosquito control. J Exp Biol 206:3877–3885

    Article  PubMed  CAS  Google Scholar 

  • Federici BA, Park H-W, Sakano Y (2006) Insecticidal protein crystals of bacillus thuringiensis. In: Shively JM (ed) Inclusions in prokaryotes. Springer-Verlag, Berlin, Heidelberg, pp 196–236

    Google Scholar 

  • Furlaneto L, Saridakis H, Arantes OMN (2000) Survival and conjugal transfer between Bacillus thuringiensis strains in aquatic environment. Braz J Microbiol 31:233–238

    Article  CAS  Google Scholar 

  • Kaur S (2000) Molecular approaches towards development of novel Bacillus thuringiensis biopesticides. World J Microbiol Biotechnol 16:781–793

    Article  CAS  Google Scholar 

  • Kaur S (2006) Molecular approaches for identification and construction of novel insecticidal genes for crop protection. World J Microbiol Biotechnol 22:233–253

    Article  CAS  Google Scholar 

  • Lereclus D, Arantes O, Chaufaux J, Lecadet MM (1989) Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett 60:211–218

    CAS  Google Scholar 

  • Lereclus D, Vallade M, Chaufaux J, Arantes O, Rambaud S (1992) Expansion of the insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Biotechnology l0:418–421

    Google Scholar 

  • Lereclus D, Agaisse H, Gominet M, Chaufaux J (1995) Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spoOA mutant. Biotechnology 13:67–71

    Article  PubMed  CAS  Google Scholar 

  • Lertcanawanichakul M, Wiwat C (2000) Improved shuttle vector for expression of chitinase gene in Bacillus thuringiensis. Lett Appl Microbiol 31:123–128

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Peng D, Luo Y, Ruan L, Yu Z, Sun M (2009) Construction of an Escherichia coli to Bacillus thuringiensis shuttle vector for large DNA fragments. Appl Microbiol Biotechnol 82:765–772

    Article  PubMed  CAS  Google Scholar 

  • Mesrati LA, Karray MD, Tounsi S, Jaoua S (2005) Construction of a new high-copy number shuttle vector of Bacillus thuringiensis. Lett Appl Microbiol 41:361–366

    Article  PubMed  CAS  Google Scholar 

  • Pardo-Lopez L, Munoz-Garay C, Porta H, Rodriguez-Almazan C, Soberon M, Bravo A (2009) Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 30:589–595

    Article  PubMed  CAS  Google Scholar 

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71:255–281

    Article  PubMed  CAS  Google Scholar 

  • Pinnamaneni R, Reddy NS, Rao K, Sambasiva S (2004) Bt gene—an exploratory approach. Asian J Microbiol Biotechnol Environ Exp Sci 6:533–539

    CAS  Google Scholar 

  • Raddadi N, Cherif A, Ouzari H, Marzorati M, Brusetti L, Boudabous A, Daffonchio D (2007) Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Ann Microbiol 57:481–494

    Article  CAS  Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559

    PubMed  CAS  Google Scholar 

  • Sansinenea E, Sanchez P, Anastacio E, Ibarra J, Olmedo G, Vazquez C (2010) Homologous recombination to Bacillus thuringiensis chromosome in one step. Agrociencia 44(4):437–447

    Google Scholar 

  • Soberon M, Fernandez LE, Perez C, Gill SS, Bravo A (2007) Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon 49:597–600

    Article  PubMed  CAS  Google Scholar 

  • Soberon M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    Article  PubMed  CAS  Google Scholar 

  • Thamthiankul S, Moar WJ, Miller ME, Panbangred W (2004) Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl Microbiol Biotechnol 65:183–192

    Article  PubMed  CAS  Google Scholar 

  • Vilas Bôas LA, Vilas Bôas GFLT, Saridakis H, Lemos MVF, Lereclus D, Arantes OMN (2000) Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiol Ecol 31:255–259

    PubMed  Google Scholar 

  • Yu J, Zhang Y, Pang Y, Xu M (2000) A replication origin of Bacillus thuringiensis. Curr Microbiol 40:123–127

    Article  PubMed  CAS  Google Scholar 

  • Yue C, Sun M, Yu Z (2005a) Improved production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional cry1C gene in its chromosome. Biotechnol Bioeng 92:1–7

    Article  PubMed  CAS  Google Scholar 

  • Yue C, Sun M, Yu Z (2005b) Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Biotechnol Bioeng 91:296–303

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Choi Y-L, Sun M, Yu Z (2008) Novel roles of Bacillus thuringiensis to control plant diseases. Appl Microbiol Biotechnol 80:563–572

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank VIEP (project) and CONACyT (project N° 80915) for financial support. We wish to thank Professor Herbert Höpfl (from Morelos State University, UAEM) for critical reading of the manuscript. We want to give a special acknowledgement to the referees who revised the manuscript and made a great effort to improve it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estibaliz Sansinenea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansinenea, E., Vázquez, C. & Ortiz, A. Genetic manipulation in Bacillus thuringiensis for strain improvement. Biotechnol Lett 32, 1549–1557 (2010). https://doi.org/10.1007/s10529-010-0338-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-010-0338-1

Keywords

Navigation