Skip to main content
Log in

Maximization of dextransucrase activity expressed in E. coli by mutation and its functional characterization

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A novel dextransucrase gene, DSRN, was obtained by ultrasoft X-ray treatment of the DSRB742 gene. The DSRN gene was further mutated via site-directed mutagenesis producing four mutants: DSRN1 (F196S), DSRN2 (Y346N), DSRN3 (K395T) and DSRN4 (P980T). Dextransucrases derived from DSRB742 and its mutants were expressed in E. coli and affinity-purified using dextran to give 80% purity. They had specific activities of 0.6–17 U/mg with Km values of 18–88 mM. DSRB742 had the lowest (0.02 s−1 · mM−1) and DSRN1 had the highest (0.13 s−1 · mM−1) Kcat/Km values. DSRN3 had the highest enzymatic transglycosylation efficiency with maltose (63% of theoretical), gentiobiose (39%), or salicine (40%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arguello-Morales M, Sanchez-Gonzalez M, Canedo M, Quarsco M, Farres A, Lopez-Munguia A (2005) Proteolytic modification of Leuconostoc mesenteroides B-512F dextransucrase. Ant van Leeuwen 87:131–141

    Article  CAS  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Molecular Endocrinol 29:23–39

    Article  CAS  Google Scholar 

  • Dols M, Remaud-Simeon M, Willemot RM, Vignon M, Monson P (1998) Characterization of the different dextransucrase activities excreted in glucose, fructose, or sucrose medium by Leuconostoc mesenteroides NRRL B-1299. Appl Environ Microbiol 64:1298–1302

    PubMed  CAS  Google Scholar 

  • Funane K, Ishii T, Terasawa K, Yamamoto T, Kobayashi M (2004) Construction of chimeric glucansucrases for analyzing substrate-binding regions that affect the structure of glucan products. Biosci Biotechnol Biochem 9:1912–1920

    Article  Google Scholar 

  • Funane K, Ishii T, Hiroshi O, Kobayashi M (2005) Changes in linkage pattern of glucan products induced by substitution of Lys residues in the dextransucrase. FEMS Lett 579:4739–4745

    CAS  Google Scholar 

  • Haas W, Banas J (2000) Ligand-binding properties of the carboxyl-terminal repeat domain of Streptococcus mutans glucan-binding protein A. J Bacteriol 182:728–733

    Article  PubMed  CAS  Google Scholar 

  • Holt SH, Al-Sheikh H, Shin KJ (2001) Characterization of dextran-producing Leuconostoc strains. Lett Appl Microbiol 32:185–189

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298

    Article  PubMed  CAS  Google Scholar 

  • Kang HK, Seo ES, Robyt JF, Kim D (2003) Directed evolution of a dextransucrase for increased constitutive activity and the synthesis of a highly branched dextran. J Mol Catalysis : Enzymatics 26:167–176

    Article  CAS  Google Scholar 

  • Kato C, Nakano Y, Lis M, Kuramitsu HK (1992) Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases. Biochem Biophys Res Commun 189:1184–1188

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Robyt JF (1994) Properties of Leuconostoc mesenteroides B-512FMC constitutive dextransucrase. Enzyme Microbial Technol 16:1010–1015

    Article  CAS  Google Scholar 

  • Kim D, Kim YM, Park MR, Ryu HJ, Park DH, Robyt JF (1999) Enzymatic modification of cellulose using Leuconostoc mesenteroides B-742CBM dextransucrase. J Microbiol Biotechnol 9:529–533

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavages of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Monchois V, Reverte A, Remaud-Simeon H, Monsan P, Willemot RM (1998) Eject of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy-terminal deletions on dextran and oligosaccharide synthesis. Appl Environ Microbiol 64:1649–1655

    Google Scholar 

  • Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23:131–151

    Article  PubMed  CAS  Google Scholar 

  • Moon YH, Lee JH, Ahn JS, Nam SH, Oh DK, Park DH, Chung HJ, Kang SS, Day DF, Kim D (2006) Synthesis, structure analyses, and characterization fo novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. J Agric Food Chem 54:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Mooser G, Hefta SA, Paxton RJ, Shively JE, Lee TD (1991) Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus glucosyltransferases. J Biol Chem 266:8916–8922

    PubMed  CAS  Google Scholar 

  • Park MR, Ryu HJ, Choe JY, Robyt JF (2001) Characterization of Leuconostoc mesenteroides B-742CB dextransucrase expressed in E. coli. J Microbiol Biotechnol 11:628–635

    CAS  Google Scholar 

  • Remaud-Simeon M, Villemot R, Sarcabal P, Montalk GP, Monsan P (2000) Glucansucrases: molecular engineering and oligosaccharide synthesis. J Mol Catalysis : Enzymatics 10:117–128

    Article  CAS  Google Scholar 

  • Russell RRB (1990) Molecular genetics of glucan metabolism in oral Streptococci. Arch Oral Biol 35:53S–58S

    Article  PubMed  CAS  Google Scholar 

  • Ryu HJ, Kim D, Seo ES, Kang HK, Lee JH, Yoon SH, Cho JY, Robyt JF, Kim DW, Chang SS, Kim SH, Kimura A (2004) Identification of amino acids residues for key role in dextransucrase activity of Leuconostoc mesenteroides B-742CB. J Microbiol Biotechnol 14:1075–1080

    CAS  Google Scholar 

  • Sanchez-Gonzalez M, Alagon A, Rodriguez-Sotres R, Lopez-Munguia A (1999) Proteolytic processing of dextrasucrase of Leuconostoc mesenteroides. FEMS Lett 181:25–30

    Article  CAS  Google Scholar 

  • Seo ES, Lee JH, Park JY, Kim D, Han HS, Robyt JF (2005) Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction. J Biotechnol 117:31–38

    Article  PubMed  CAS  Google Scholar 

  • Zahnley JC, Smith MR (2000) Cellular association of glucosyltransferases in Leuconostoc mesenteroides and effects on detergent on cell association. Appl Biochem Biotechnol 87:57–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was mostly supported by International Cooperative Research Program, Korea Science and Engineering Foundation (Grant M60402010002-05A0201-00210), and partially by Post-doc supporting program of Korean Research Foundation Grant (KRF-2005-216-C00055) and CNU Specialization Grant by Chonnam National University for students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doman Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, S.H., Ko, E.A., Jang, S.S. et al. Maximization of dextransucrase activity expressed in E. coli by mutation and its functional characterization. Biotechnol Lett 30, 135–143 (2008). https://doi.org/10.1007/s10529-007-9498-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9498-z

Keywords

Navigation