Skip to main content

Advertisement

Log in

Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental pollution and reduce dependency on fossil fuels. There are two major biological processes that can convert biomass to liquid energy carriers via anaerobic biological breakdown of organic matter: ethanol fermentation and mixed acetone, butanol, ethanol (ABE) fermentation. The specific product formation is determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account the microbiology and biochemistry of the processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amon T, Hackl E, Jeremic D, Amon B, Boxberger J (2001) Biogas production from animal wastes, energy plants and organic wastes. In: van Velsen AFM, Verstraete WH (eds) Proceedings of the 9th world congress on anaerobic digestion. Technologisch instituut zw, Antwerp, 381–386

    Google Scholar 

  • Birnbaum S, Bailey JE (1991) Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol Bioeng 37:736–745

    Article  CAS  PubMed  Google Scholar 

  • Birol G, Onsan ZI, Kirdar B, Oliver SG (1998) Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch. Enzyme Microb Technol 22(8): 672–677

    Article  CAS  Google Scholar 

  • Claasen PAM, Budde MAW, Buitelaar RM, Tan GBN (1998) Production of acetone butanol and ethanol (ABE) from agricultural residues or domestic organic waste (DOW) and long-term fermentation on glucose. In: Kopetz H, Weber T, Palz W, Chartier P, Ferrero GL (eds) 10th European conference and technology exhibition biomass for energy and industry. Würzburg, pp 138–141

  • Claasen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  Google Scholar 

  • Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Article  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658

    Article  PubMed  CAS  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of production of ethanol from softwood. Appl Microb Biotechnol 59:618–628

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Jeppson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microbiol Technol 16:933–943

    Article  Google Scholar 

  • Horvath IS (2004) Fermentaion inhibitors in the production of bioethanol: detoxification of lignocellulose hydrolysates and physiological effects of furfural on yeast. Ph.D. Thesis. Department of Chemical Engineering and Environmental Science, Chalmers University of Technology, Göteborg, Sweden

  • Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167–175

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    PubMed  CAS  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Dale B (2004) Global potential bioethanol production from wasted crops and crop residues. Biot Bioen 26:361–375

    Google Scholar 

  • Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Biores Technol 82:15–26

    Article  CAS  Google Scholar 

  • Komers K, Stloukal R, Machek J, Skopal F. Biodiesel from rapeseed oil, methanol KOH 3 (2001) Analysis of composition of actual reaction mixture. Eur J Lipid Sci Technol 103:363–71

    Article  CAS  Google Scholar 

  • Krishan MS, Blanco M, Shattuck CK, Nghiem NP, Davison BH (2000) Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4 (pZB5). Appl Biochem Biotech 84–86:525–541

    Article  Google Scholar 

  • Kyoto protocol to the United Nations framework convention on climate change (1998). http://unfccc.int/resource/docs/convkp/kpeng.pdf. Cited 20 Feb 2007

  • Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119

    Article  PubMed  CAS  Google Scholar 

  • Lens P, Westermann P, Haberbauer M, Moreno A (eds) (2005) Biofuels for fuel cells. Renewable energy from biomass fermentation. IWA Publishing, London

    Google Scholar 

  • Liu J, Fan LT (2004) Downstream process synthesis for biochemical production of butanol, ethanol and acetone from grains: generation of optimal and near-optimal flowsheets with conventional operating units. Biotechnol Prog 20:1518–1527

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotech 57–58:741–761

    Article  Google Scholar 

  • MC Millan JD (1997) Bioethanol production: status and prospects. Renewable energy 10:295–302

    Article  Google Scholar 

  • Mermelstein LD, Papoutsakis ET (1993) Metabolic engineering of Clostridium acetobutylicun ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon. Biotechnol Bioeng 42:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microb 4:324–329

    Article  CAS  Google Scholar 

  • Murphy JD, McCarthy K (2005) Ethanol production from energy crops and wastes for use as a transport fuel in Ireland. Appl Energy 82:148–166

    Article  CAS  Google Scholar 

  • Nair RV, Green EM, Watson DE, Bennet GN, Papoutsakis ET (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181:319–330

    PubMed  CAS  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105–108:87–100

    Article  PubMed  Google Scholar 

  • Parekh M, Formanek J, Blaschek HP (1999) Pilot-scale production of butanol by Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn steep water. Appl Microbiol Biotechnol 51:152–157

    Article  CAS  Google Scholar 

  • Qureshi N, Blaschek HP (2001) Recent advances in ABE fermentation: hyper-butanol producing Clostridiun beijerinckii BA101. J Ind Microbiol Biotechnol 27:292–297

    Article  PubMed  CAS  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quimica Nova 26:863–871

    CAS  Google Scholar 

  • Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent production in clostridia. In: Woods DR (eds) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 25–50

    Google Scholar 

  • Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 32(2):283–289

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G (1999) Metabolix fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sudha KR, Swamy MV, Seenayya G (1996) High ethanol production by new isolates of Clostridium thermocellum. Biotechnol Lett 18(8):957–962

    Article  Google Scholar 

  • Tailliez P, Girard H, Longin R, Beguin P, Millet J (1989) Cellulose fermentation by an asporogenous mutant and an ethanol—tolerant mutant of Clostridium thermocellum. Appl Env Microb 55(1):203–206

    CAS  Google Scholar 

  • Torry-Smith M (2002) Optimization of biological processes applied to bioethanol production. PhD Thesis. BioCentrum-DTU, Technical University of Denmark, Denmark

  • Thomsen MH, Thomsen AB, Jørgensen H, Holm Christensen BH (2005) Preliminary results on optimising hydrothermal treatment used in co-production of biofuels. 27th symposium on biotechnology for fuels and chemicals, Denver Colorado, May 1–4 2005

  • Visser W (1995) Oxygen requirements of fermentative yeasts. PhD thesis. Delft University of Technology, Netherland

  • Woods DR (1995) The genetic engineering of microbial solvent production. Trends Biotechnol 13:259–264

    Article  PubMed  CAS  Google Scholar 

  • Wiegel JG, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen.nov., spec.nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 122:41–48

    Google Scholar 

  • Wright A, Bruce A (2003) Genetically modified microorganisms and their potential effects on human health and nutrition. Trends Food Sci Technol 14:264–276

    Article  CAS  Google Scholar 

  • Wyman CE (1996) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC

    Google Scholar 

  • Zaldivar J, Nielsen L, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Prasad Kaparaju (DTU) is gratefully acknowledged for his useful comments of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irini Angelidaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karakashev, D., Thomsen, A.B. & Angelidaki, I. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass. Biotechnol Lett 29, 1005–1012 (2007). https://doi.org/10.1007/s10529-007-9360-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9360-3

Keywords

Navigation