Skip to main content
Log in

Electron Capture Dissociation Mass Spectrometry in Characterization of Peptides and Proteins

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Electron capture dissociation (ECD) represents one of the most recent and significant advancements in tandem mass spectrometry (MS/MS) for the identification and characterization of polypeptides. In comparison with the conventional fragmentation techniques, such as collisionally activated dissociation (CAD), ECD provides more extensive sequence fragments, while allowing the labile modifications to remain intact during backbone fragmentation—an important attribute for characterizing post-translational modifications. Herein, we present a brief overview of the ECD technique as well as selected applications in characterization of peptides and proteins. Case studies including characterization and localization of amino acid glycosylation, methionine oxidation, acylation, and “top–down” protein mass spectrometry using ECD will be presented. A recent technique, coined as electron transfer dissociation (ETD), will be also discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  • Beu SC, Senko MW, Quinn JP, Wampler FM III, McLafferty FW (1993) Fourier-transform electrospray instrumentation for tandem high-resolution mass spectrometry of large molecules. J Am Soc Mass Spectrom 4:557–565

    Article  CAS  Google Scholar 

  • Borchers CH, Thapar R, Petrotchenko EV, Torres MP, Speir JP, Easterling M, Dominski Z, Marzluff WF (2006) Combined top–down and bottom–up proteomics identifies a phsophorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding. Proc Natl Acad Sci USA 103:3094–3099

    Article  PubMed  CAS  Google Scholar 

  • Breuker K, Oh H-B, Lin C, Carpenter BK, McLafferty FW (2004) Nonergodic and conformational control of the electron capture dissociation of protein molecules. Proc Natl Acad Sci USA 101:14011–14016

    Article  PubMed  CAS  Google Scholar 

  • Chalmers MJ, Mackay CL, Hendrickson CL, Wittke S, Walden M, Mischak H, Fliser D, Just I, Marshall AG (2005) Combined top–down and bottom–up mass spectrometric approach to characterization of biomarkers for renal disease. Anal Chem 77:7163–7171

    Article  PubMed  CAS  Google Scholar 

  • Chu J-W, Yin J, Brooks BR, Wang DIC, Ricci MS, Brems DN, Trout BL (2004) A comprehensive picture of non-site specific oxidation of methionine residues by peroxides in protein pharmaceuticals. J Pharm Sci 93:3096–3102

    Article  PubMed  CAS  Google Scholar 

  • Coon JJ, Ueberheide B, Syka JEP, Dryhurst DD, Ausio J, Shabanowitz J, Hunt DF (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci USA 102:9463–9468

    Article  PubMed  CAS  Google Scholar 

  • Cooper HJ, Heath JK, Jaffray E, Hay RT, Lam TT, Marshall AG (2004) Identification of sites of ubiquitination in proteins: a Fourier transform ion cyclotron resonance mass spectrometry approach. Anal Chem 76:6982–6988

    Article  PubMed  CAS  Google Scholar 

  • Cooper HJ, Hakansson K, Marshall AG (2005) The role of electron capture dissociation in biomolecular analysis. Mass Spectrom Rev 24:201–222

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Roth V, Roos F, Grossmann J, Baginsky S, Widmayer P, Gruissem W, Buhmann JM (2005) NovoHMM: a hidden Markon model for de novo peptide sequencing. Anal Chem 77:7265–7273

    Article  PubMed  CAS  Google Scholar 

  • Foldvari M, Attah-Poku S, Hu J, Li Q, Hughes H, Babiuk LA, Kruger S (1998) Palmitoyl derivatives of interferon alpha: potential for cutaneous delivery. J Pharm Sci 87:1203–1208

    Article  PubMed  CAS  Google Scholar 

  • Foldvari M, Baca-Estrada ME, He Z, Hu J, Attah-Poku S, King M (1999) Dermal and transdermal delivery of protein pharmaceuticals: lipid-based delivery systems for interferon alpha. Biotechnol Appl Biochem 30:129–137

    PubMed  CAS  Google Scholar 

  • Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nature Rev Drug Discov 4:298–306

    Article  CAS  Google Scholar 

  • Fuchs F (2002) Quality control of biotechnology-derived vaccines: technical and regulatory considerations. Biochimie 84:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Ge Y, Lawhorn BG, El-Naggar M, Strauss E, Park JH, Begley TP, McLafferty FW (2002) Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. J Am Chem Soc 124:672–678

    Article  PubMed  CAS  Google Scholar 

  • Gervais A, Hammel Y-A, Pelloux S, Lepage P, Baer G, Carte N, Sorokine O, Strub J-M, Koerner R, Leize E, Van Dorsselaer A (2003) Glycosylation of human recombinant gonadotrophins: characterization and batch-to-batch consistency. Glycobiology 13:179–189

    Article  PubMed  CAS  Google Scholar 

  • Gitlin G, Tsarbopoulos A, Patel ST, Sydor W, Pramanik BN, Jacobs S, Westreich L, Mittelman S, Bausch JN (1996) Isolation and characterization of a mono-methioninesulfoxide variant of interferon alpha-2b. Pharm Res 13:762–769

    Article  PubMed  CAS  Google Scholar 

  • Guan Z (2002) Identification and localization of the fatty acid modification in ghrelin by electron capture dissociation. J Am Soc Mass Spectrom 13:1443–1447

    Article  PubMed  CAS  Google Scholar 

  • Guan Z, Kelleher NL, Oȁ9Connor PB, Aaserud DJ, Little DP, McLafferty FW (1996) 193 nm photodissociation of larger multiply-charged biomolecules. Int J Mass Spectrom 157/158:357–364

    Article  CAS  Google Scholar 

  • Guan Z, Yates NA, Bakhtiar R (2003) Detection and characterization of methionine oxidation in peptides by collision-induced dissociation and electron capture dissociation. J Am Soc Mass Spectrom 14:605–613

    Article  PubMed  CAS  Google Scholar 

  • Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45:1198–1215

    Article  PubMed  CAS  Google Scholar 

  • Haselmann KF, Budnik BA, Olsen JV, Nielsen ML, Reis CA, Clausen H, Johnsen AH, Zubarev RA (2001) Advantages of external accumulation for electron capture dissociation in Fourier transform mass spectrometry. Anal Chem 73:2998–3005

    Article  PubMed  CAS  Google Scholar 

  • Hermeling S, Crommelin DJA, Schellekens H, Jiskoot W (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 21:897–903

    Article  PubMed  CAS  Google Scholar 

  • Janis LJ, Davis GC (1994) Analytical strategies for the determination of protein modifications. Dev Biol Stand 83:135–142

    PubMed  CAS  Google Scholar 

  • Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13:5043–5054

    Article  PubMed  CAS  Google Scholar 

  • Jefferis R (2005) Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21:11–16

    Article  PubMed  CAS  Google Scholar 

  • Jones JJ, Wilkins CL, Cai Y, Beitle RR, Liyanage R, Lay JO (2005) Real-time monitoring of recombinant bacterial proteins by mass spectrometry. Biotechnol Prog 21:1754–1758

    Article  PubMed  CAS  Google Scholar 

  • Kelleher NL (2004) Top–down proteomics. Anal Chem 76:197A–203A

    Article  PubMed  CAS  Google Scholar 

  • Kelleher NL, Lin HY, Valaskovic GA, Aaserud DJ, Fridriksson EK, McLafferty FW (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812

    Article  CAS  Google Scholar 

  • Kleinnijenhuis AJ, Duursma MC, Breukink E, Heeren RMA, Heck AJR (2003) Localization of intramolecular monosulfide bridges in lantibiotics determined with electron capture induced dissociation. Anal Chem 75:3219–3225

    Article  PubMed  CAS  Google Scholar 

  • Loo JA, Edmonds CG, Udseth HR, Smith RD (1990) Effect of reducing disulfide-containing proteins on electrospray Ionization mass spectra. Anal Chem 62:693–698

    Article  PubMed  CAS  Google Scholar 

  • Lundblad RL, Bradshaw RA (1997) Applications of site-specific chemical modification in the manufacture of biopharmaceuticals: I. An overview. Biotechnol Appl Biochem 26:143–151

    PubMed  CAS  Google Scholar 

  • Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  PubMed  CAS  Google Scholar 

  • Marshall AG, Hendrickson CL, Shi SD (2002) Scaling MS plateaus with high-resolution FT-ICRMS. Anal Chem 74:252A–259A

    Article  PubMed  CAS  Google Scholar 

  • McLafferty FW, Horn DM, Breuker K, Ge Y, Lewis MA, Cerda B, Zubarev RA, Carpenter BK (2001) Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J Am Soc Mass Spectrom 12:245–249

    Article  PubMed  CAS  Google Scholar 

  • McLuckey SA (1992) Principles of collisional activation in analytical mass spectrometry. J Am Soc Mass Spectrom 3:599–614

    Article  CAS  Google Scholar 

  • Medzihradszky KF, Zhang X, Chalkley RJ, Guan S, McFarland MA, Chalmers MJ, Marshall AG, Diaz RL, Allis CD, Burlingame AL (2004) Characterization of Tetrahymena Histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol Cell Proteomics 3:872–886

    Article  PubMed  CAS  Google Scholar 

  • Meng F, Forbes AJ, Miller LM, Kelleher NL (2005) Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass Spectrom Rev 24:126–134

    Article  PubMed  CAS  Google Scholar 

  • Mirgorodskaya E, Roepstorff P, Zubarev RA (1999) Localization of O-glycosylation sites in peptides by electron capture dissociation in a Fourier transform mass spectrometer. Anal Chem 71:4431–4436

    Article  PubMed  CAS  Google Scholar 

  • Molineux G (2003) Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy 23:3S–8S

    Article  PubMed  CAS  Google Scholar 

  • Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta®). Curr Pharm Design 10:1235–1244

    Article  CAS  Google Scholar 

  • Murano G (1997) FDA perspective on specifications for biotechnology products: from IND to PLA. Dev Biol Stand 91:3–13

    PubMed  CAS  Google Scholar 

  • Nemeth-Cawley JF, Tangarone BS, Rouse JC (2003) “Top down” characterization is a complementary technique to peptide sequencing for identifying protein species in complex mixtures. J Proteomics 2:495–505

    CAS  Google Scholar 

  • Oȁ9Connor PB, Cournoyer JJ, Pitteri SJ, Chrisman PA, McLuckey SA (2006) Differentiation of aspartic and isoaspartic acids using electron transfer dissociation. J Am Soc Mass Spectrom 17:15–19

    Article  CAS  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  PubMed  CAS  Google Scholar 

  • Pesavento JJ, Kim Y-B, Taylor GK, Kelleher NL (2004) Shotgun annotation of histone modifications: a new approach for streamlined characterization of proteins by top down mass spectrometry. J Am Chem Soc 126:3386–3387

    Article  PubMed  CAS  Google Scholar 

  • Peter-Katalinic J (2005) Methods in enzymology: O-glycosylation of proteins. Meth Enzymol 405:139–171

    Article  PubMed  CAS  Google Scholar 

  • Peterman SM, Dufresne CP, Horning S (2005) The use of a hybrid linear trap/FT-ICR mass spectrometer for on-line high resolution/high mass accuracy bottom–up sequencing. J Biomol Tech 16:112–124

    PubMed  Google Scholar 

  • Reid GE, McLuckey SA (2002) “Top down” protein characterization via tandem mass spectrometry. J Mass Spectrom 37:663–675

    Article  PubMed  CAS  Google Scholar 

  • Resh MD (2004) Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 37:217–232

    PubMed  CAS  Google Scholar 

  • Roberts MJ, Bentley MD, Harris JM (2002) Chemistry and peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    Article  PubMed  CAS  Google Scholar 

  • Rouse JC, McClellan JE, Patel HK, Jankowski MA, Porter TJ (2005) Top–down characterization of protein pharmaceuticals by liquid chromatography/mass spectrometry: application to recombinant factor IX comparability-a case study. Methods Mol Biol 308:435–460

    PubMed  CAS  Google Scholar 

  • Roy I, Gupta MN (2004) Freeze-drying of proteins: some emerging concerns. Biotechnol Appl Biochem 39:165–177

    Article  PubMed  CAS  Google Scholar 

  • Ryan TE, Patterson SD (2002) Proteomics: drug target discovery on an industrial scale. Trends Biotechnol 20:S45–S51

    Article  PubMed  CAS  Google Scholar 

  • Savitski MM, Nielsen ML, Zubarev RA (2005) New data base-independent, sequence tag-based scoring of peptide MS/MS data validates Mowse score, recovers below threshold data, singles out modified peptides, and assesses the quality of MS/MS techniques. Mol Cell Proteomics 4:1180–1188

    Article  PubMed  CAS  Google Scholar 

  • Schellekens H (2005) Factors influencing the immunogenicity of therapeutic proteins. Nephrol. Dial. Transplant 20 Suppl. 6:vi3-vi9

    Article  PubMed  CAS  Google Scholar 

  • Schey KL, Finley EL (2000) Identification of peptide oxidation by tandem mass spectrometry. Acc Chem Res 33:299–306

    Article  PubMed  CAS  Google Scholar 

  • Schroeder MJ, Webb DJ, Shabanowitz J, Horwitz AF, Hunt DF (2005) Methods for the detection of paxillin post-translational modifications and interacting proteins by mass spectrometry. J Proteome Res 4:1831–1841

    Article  CAS  Google Scholar 

  • Senko MW, Speir JP, McLafferty FW (1994) Collisional activation of large multiply charged ions using Fourier transform mass spectrometry. Anal Chem 66:2801–2808

    Article  PubMed  CAS  Google Scholar 

  • Sheffield WP (2001) Modification of clearance of therapeutic and potentially therapeutic proteins. Current Drug Targets: Cardiovas Hemat Dis 1:1–22

    Article  CAS  Google Scholar 

  • Shi SDH, Hemling ME, Carr SA, Horn DM, Lindh I, McLafferty FW (2001) Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. Anal Chem 73:19–22

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635

    Article  PubMed  CAS  Google Scholar 

  • Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112

    Article  PubMed  CAS  Google Scholar 

  • Smith RA, Dewdney JM, Fears R, Poste G (1993) Chemical derivatization of therapeutic proteins. Trends Biotechnol 11:397–403

    Article  PubMed  CAS  Google Scholar 

  • Smith RG, Jiang H, Sun Y (2005) Developments in ghrelin biology and potential clinical relevance. Trends Endocrinol Metab 16:436–442

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL (2005) Methionine oxidation and aging. Biochim Biophys Acta 1703:135–140

    PubMed  CAS  Google Scholar 

  • Strupat K (2005) Molecular weight determination of peptides and proteins by ESI and MALDI. Meth Enzymol 405:1–36

    Article  PubMed  CAS  Google Scholar 

  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101:9528–9533

    Article  PubMed  CAS  Google Scholar 

  • Sze S-K, Ge Y, Oh H-B, McLafferty FW (2002) Top–down mass spectrometry of a 29-kDa protein for characterization of any posttranslational modification to within one residue. Proc Natl Acad Sci USA 99:1774–1779

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Persky AM, Hochhaus G, Meibohm B (2004) Pharmacokinetic aspects of biotechnology products. J␣Pharm Sci 93:2184–2204

    Article  PubMed  CAS  Google Scholar 

  • Tang WH, Halpern BR, Shilov IV, Seymour SL, Keating SP, Loboda A, Patel AA, Schaeffer DA, Nuwaysir LM (2005) Discovering known and unanticipated protein modifications using MS/MS database searching. Anal Chem 77:3931–3946

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT, Garneau-Tsodikova S, Gatto GJ (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed 44:7342–7372

    Article  CAS  Google Scholar 

  • Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Wurn FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  • Wysocki VH, Resing KA, Zhang Q, Cheng G (2005) Mass spectrometry of peptides and proteins. Methods 35:211–222

    Article  PubMed  CAS  Google Scholar 

  • Yates JR (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Struct 33:297–316

    Article  CAS  Google Scholar 

  • Zabrouskov V, Han X, Welker E, Zhai H, Lin C, van Wijk KJ, Scheraga HA, McLafferty FW (2006) Stepwise deamidation of ribonuclease A at five sites determined by top down mass spectrometry. Biochemistry 45:987–992

    Article  PubMed  CAS  Google Scholar 

  • Zubarev RA (2003) Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom Rev 22:57–77

    Article  PubMed  CAS  Google Scholar 

  • Zubarev RA (2004) Electron capture dissociation mass spectrometry. Curr Opin Biotechnol 15:12–16

    Article  PubMed  CAS  Google Scholar 

  • Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations: a nonergodic process. J Am Chem Soc 120:3265–3266

    Article  CAS  Google Scholar 

  • Zubarev RA, Kruger NA, Fridriksson EK, Lewis MA, Horn DM, Carpenter BK, McLafferty FW (1999) Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J Am Chem Soc 121:2857–2862

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Professor F.W. McLafferty and Dr. Y. Ge for kindly providing Figures 2 and 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Bakhtiar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhtiar, R., Guan, Z. Electron Capture Dissociation Mass Spectrometry in Characterization of Peptides and Proteins. Biotechnol Lett 28, 1047–1059 (2006). https://doi.org/10.1007/s10529-006-9065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9065-z

Key words

Navigation