Skip to main content

Advertisement

Log in

Circular RNA circKIF2A Contributes to the Progression of Neuroblastoma Through Regulating PRPS1 Expression by Sponging miR-377-3p

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Neuroblastoma is a malignant tumor originating from the primitive neural crest. Circular RNA (circRNA) Kinesin Superfamily Protein 2A (circKIF2A, also known as hsa_circ_0129276) has been reported to be upregulated in neuroblastoma. However, the molecular mechanism of circKIF2A participated in neuroblastoma is poorly defined. We analyzed the expression levels of circKIF2A, microRNA-377-3p (miR-377-3p), and phosphoribosyl pyrophosphate synthetase 1 (PRPS1) in neuroblastoma tissues and cell lines (SK-N-AS and LAN-6) and explored their roles. The expression levels of CircKIF2A and PRPS1 were increased and that of miR-377-3p were decreased in 21 neuroblastoma tissues and cells. Functionally, the silencing of circKIF2A inhibited cell proliferation, migration, invasion, and glycolysis, boosted apoptosis in neuroblastoma cells in vitro, and blocked the growth of subcutaneously transplanted tumors in nude mice. Mechanically, circKIF2A could work as a sponge of miR-377-3p to enhance PRPS1 expression. CircKIF2A knockdown impedes cell proliferation, metastasis, and glycolysis partly by regulating the miR-377-3p/PRPS1 axis, suggesting that targeting circKIF2A can be a feasible therapeutic strategy for neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Ahmed AA, Zhang L, Reddivalla N, Hetherington M (2017) Neuroblastoma in children: update on clinicopathologic and genetic prognostic factors. Pediatr Hematol Oncol 34(3):165–185

    Article  PubMed  Google Scholar 

  • Ara T, DeClerck YA (2006) Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev 25(4):645–657

    Article  PubMed  Google Scholar 

  • Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH (2019) CircRNAs and cancer: biomarkers and master regulators. Semin Cancer Biol 58:90–99

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yu J, Tian H, Shan Z, Liu W, Pan Z et al (2019) Circle RNA hsa_circRNA_100290 serves as a ceRNA for miR-378a to regulate oral squamous cell carcinoma cells growth via Glucose transporter-1 (GLUT1) and glycolysis. J Cell Physiol 234(11):19130–19140

    Article  CAS  PubMed  Google Scholar 

  • Creighton CJ, Nagaraja AK, Hanash SM, Matzuk MM, Gunaratne PH (2008) A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA 14(11):2290–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13(1):34–42

    Article  PubMed  Google Scholar 

  • Fischer JW, Leung AK (2017) CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol 52(2):220–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galardi A, Colletti M, Businaro P, Quintarelli C, Locatelli F, Di Giannatale A (2018) MicroRNAs in neuroblastoma: biomarkers with therapeutic potential. Curr Med Chem 25(5):584–600

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Tan S, Bi J, Rao M, Yu Y, Tian L (2020) SNHG16 knockdown inhibits tumorigenicity of neuroblastoma in children via miR-15b-5p/PRPS1 axis. NeuroReport 31(17):1225–1235

    Article  CAS  PubMed  Google Scholar 

  • Goshima Y, Hida T, Gotoh T (2012) Computational analysis of axonal transport: a novel assessment of neurotoxicity, neuronal development and functions. Int J Mol Sci 13(3):3414–3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31–44

    Article  CAS  PubMed  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  • He M, Chao L, You YP (2017) PRPS1 silencing reverses cisplatin resistance in human breast cancer cells. Biochem Cell Biol 95(3):385–393

    Article  CAS  PubMed  Google Scholar 

  • Homma N, Zhou R, Naseer MI, Chaudhary AG, Al-Qahtani MH, Hirokawa N (2018) KIF2A regulates the development of dentate granule cells and postnatal hippocampal wiring. Elife 7:e30935

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, Liu Z, Hu J, Luo Z, Zhang C, Wang L et al (2020) MiR-377–3p suppresses colorectal cancer through negative regulation on Wnt/β-catenin signaling by targeting XIAP and ZEB2. Pharmacol Res 156:104774

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Wu AD, Huang C, Gu J, Zhang L, Huang H et al (2016) Isorhapontigenin (ISO) inhibits invasive bladder cancer formation in vivo and human bladder cancer invasion in vitro by targeting STAT1/FOXO1 axis. Cancer Prev Res (phila) 9(7):567–580

    Article  CAS  Google Scholar 

  • Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71(3):428–442

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ye J, Zhu S, Cui H (2019a) Down-regulation of phosphoribosyl pyrophosphate synthetase 1 inhibits neuroblastoma cell proliferation. Cells 8(9):955

    Article  CAS  PubMed Central  Google Scholar 

  • Li W, Huang K, Wen F, Cui G, Guo H, He Z et al (2019b) LINC00184 silencing inhibits glycolysis and restores mitochondrial oxidative phosphorylation in esophageal cancer through demethylation of PTEN. EBioMedicine 44:298–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim SO, Li CW, Xia W, Lee HH, Chang SS, Shen J et al (2016) EGFR signaling enhances aerobic glycolysis in triple-negative breast cancer cells to promote tumor growth and immune escape. Cancer Res 76(5):1284–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wang S (2020) Long non-coding RNA OIP5-AS1 knockdown enhances CDDP sensitivity in osteosarcoma via miR-377-3p/FOSL2 axis. Onco Targets Ther 13:3853–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wang Q, Shen J, Yang BB, Ding X (2019) Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol 16(7):899–905

    Article  PubMed  PubMed Central  Google Scholar 

  • Louis CU, Shohet JM (2015) Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med 66:49–63

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, An X, Guan X, Kong Q, Wang Y, Li P et al (2018) High expression of PRPS1 induces an anti-apoptotic effect in B-ALL cell lines and predicts an adverse prognosis in Chinese children with B-ALL. Oncol Lett 15(4):4314–4322

    PubMed  PubMed Central  Google Scholar 

  • Mahmoudi E, Kiltschewskij D, Fitzsimmons C, Cairns MJ (2019) Depolarization-associated CircRNA regulate neural gene expression and in some cases may function as templates for translation. Cells 9(1):25

    Article  PubMed Central  CAS  Google Scholar 

  • Mercati O, Abi Warde MT, Lina-Granade G, Rio M, Heide S, de Lonlay P et al (2020) PRPS1 loss-of-function variants, from isolated hearing loss to severe congenital encephalopathy: new cases and literature review. Eur J Med Genet 63(11):104033

    Article  PubMed  Google Scholar 

  • Olsen RR, Otero JH, García-López J, Wallace K, Finkelstein D, Rehg JE et al (2017) MYCN induces neuroblastoma in primary neural crest cells. Oncogene 36(35):5075–5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda AC (2018) Circular RNAs act as miRNA sponges. Adv Exp Med Biol 1087:67–79

    Article  CAS  PubMed  Google Scholar 

  • Patop IL, Kadener S (2018) circRNAs in cancer. Curr Opin Genet Dev 48:121–127

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Li X, Tan L, Lee JH, Xia Y, Cai Q et al (2018) Conversion of PRPS hexamer to monomer by AMPK-mediated phosphorylation inhibits nucleotide synthesis in response to energy stress. Cancer Discov 8(1):94–107

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Guo W, Wang Q, Chen Z, Huang S, Zhao F et al (2015) MicroRNA-124 reduces the pentose phosphate pathway and proliferation by targeting PRPS1 and RPIA mRNAs in human colorectal cancer cells. Gastroenterology 149(6):1587–1598

    Article  CAS  PubMed  Google Scholar 

  • Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Liu T, Chi J, Luo H, Wu Z, Xiong B et al (2019) LINC00339 promotes gastric cancer progression by elevating DCP1A expression via inhibiting miR-377-3p. J Cell Physiol 234(12):23667–23674

    Article  CAS  PubMed  Google Scholar 

  • Stigliani S, Coco S, Moretti S, Oberthuer A, Fischer M, Theissen J et al (2012) High genomic instability predicts survival in metastatic high-risk neuroblastoma. Neoplasia 14(9):823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Yang B, Cao X, Li Q, Jiang L, Wang D (2019) MicroRNA-377-3p inhibits growth and invasion through sponging JAG1 in ovarian cancer. Genes Genomics 41(8):919–926

    Article  CAS  PubMed  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  • Whittle SB, Smith V, Doherty E, Zhao S, McCarty S, Zage PE (2017) Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther 17(4):369–386

    Article  CAS  PubMed  Google Scholar 

  • Wilusz JE, Sharp PA (2013) Molecular biology. A circuitous route to noncoding RNA. Science 340(6131):440–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Zhang Z, Cui Y (2020) Long noncoding RNA SNHG1 contributes to the promotion of prostate cancer cells through regulating miR-377-3p/AKT2 axis. Cancer Biother Radiopharm 35(2):109–119

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Guo JF, Zhang ML, Li AM (2020a) LncRNA SNHG4 promotes neuroblastoma proliferation, migration, and invasion by sponging miR-377-3p. Neoplasma 67(5):1054–1062

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Ren B, Yang G, Wang H, Chen G, You L et al (2020b) The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci 77(2):305–321

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yang S, Wang Q, Pang J, Wang Y, Wang H et al (2020c) KHK-A promotes the proliferation of oesophageal squamous cell carcinoma through the up-regulation of PRPS1. Arab J Gastroenterol 22(1):40–46

    Article  PubMed  Google Scholar 

  • Yang J, Yu L, Yan J, Xiao Y, Li W, Xiao J et al (2020d) Circular RNA DGKB promotes the progression of neuroblastoma by targeting miR-873/GLI1 axis. Front Oncol 10:1104

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yang T, Xiao J (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang J, Liu Q, Zhao Y, Zhang W, Yang H (2020a) Circ-CUX1 accelerates the progression of neuroblastoma via miR-16-5p/DMRT2 Axis. Neurochem Res 45(12):2840–2855

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Dong XM, Wang FP (2020b) MiR-377-3p inhibits cell metastasis and epithelial-mesenchymal transition in cervical carcinoma through targeting SGK3. Eur Rev Med Pharmacol Sci 24(9):4687–4696

    PubMed  Google Scholar 

  • Zhi F, Wang R, Wang Q, Xue L, Deng D, Wang S et al (2014) MicroRNAs in neuroblastoma: small-sized players with a large impact. Neurochem Res 39(4):613–623

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Zhang S, Cai Z, Gao F, Deng W, Wen Y et al (2020) A glycolysis-related gene pairs signature predicts prognosis in patients with hepatocellular carcinoma. PeerJ 8:e9944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 32 kb)

10528_2021_10174_MOESM2_ESM.tif

Supplementary Figure S1. CircKIF2A deficiency could hinder proliferation, migration, invasion, glycolysis, and accelerate apoptosis of IMR-32 cells. IMR-32 cells were transfected with si-NC and si-circKIF2A. (A) CircKIF2A level was assessed in transfected IMR-32 cells by RT-qPCR assay. (B-D) Cell proliferation was analyzed by MTT assay, EdU assay, and Colony formation assay in transfected IMR-32 cells. (E) Apoptosis rate was detected Flow cytometry assay in transfected IMR-32 cells. (F) PCNA, Bcl-2, and Bax protein levels were determined by Western blot assay in transfected IMR-32 cells. (G and H) The abilities of migration and invasion were measured by Transwell assays in transfected IMR-32 cells. (I and J) Levels of glucose consumption and lactate production were evaluated by the corresponding kits in transfected IMR-32 cells. (K) HK2 and LDHA protein levels were tested by Western blot assay in transfected IMR-32 cells. *P <0.05. (TIF 4573 kb)

10528_2021_10174_MOESM3_ESM.tif

Supplementary Figure S2. The effects of miR-377-3p on 5 potential target mRNAs in neuroblastoma cells. (A and B) Western blot analysis of ABI1, PHF20, PRPS1, ROBO2, and STAT2 protein levels in SK-N-AS and LAN-6 cells transfected with miR-377-3p mimic or miR-NC. *P <0.05, **P <0.01, ***P <0.001. (TIF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Li, J., Yang, F. et al. Circular RNA circKIF2A Contributes to the Progression of Neuroblastoma Through Regulating PRPS1 Expression by Sponging miR-377-3p. Biochem Genet 60, 1380–1401 (2022). https://doi.org/10.1007/s10528-021-10174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10174-4

Keywords

Navigation