Skip to main content
Log in

Development of Genomic SSR Markers and Molecular Characterization of Magnaporthe oryzae Isolates from Wheat in Brazil

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Magnaporthe oryzae, the causal agent of wheat blast, was characterized on a molecular level with 38 newly isolated genomic SSR loci. Among the 31 wheat isolates analyzed, 15 polymorphic loci were detected, with an average of 1.7 alleles per locus, 28.9% of them being highly or reasonably informative. The number of polymorphic loci was higher in isolates from Londrina in the Brazilian state of Paraná and Coromandel in Minas Gerais compared with Goiânia in Goiás and São Borja in Rio Grande do Sul. The rice isolate was clearly different from the wheat isolates, and the size difference in polymorphic SSR loci between one isolate from wheat and one isolate from rice was associated with the number of repeats. Some isolates collected from different states and in different years demonstrated similarities of 100%. The markers developed here are useful for the genetic analysis of M. oryzae isolated from wheat, and isolates representing the variability detected in the field can be used to search for better wheat blast resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adreit H, Andriantsimialona DS, Utami W, Notteghem JL, Lebrun MH, Tharreau D (2007) Microsatellite markers for population studies of the rice blast fungus, Magnaporthe grisea. Mol Ecol Notes 7:667–670

    Article  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Anjos JRN, da Silva DB, Charchar MJD, Rodrigues GC (1996) Ocorrência de brusone (Pyricularia grisea) em trigo e centeio na região dos cerrados do Brasil Central. Pesq Agropec Bras 31:79–82

    Google Scholar 

  • Azevedo JL, Costa SOP (1973) Exercícios práticos de genética. Editora Nacional, São Paulo

    Google Scholar 

  • Barros BC, Felício JC, Camargo CEO, Ferreira Filho AWP (1989) Reação de cultivares de trigo a brusone em condições de campo. Summa Phytopathol 15:21 (Abstract)

    Google Scholar 

  • Baturo-Ciesniewska A (2011) Genetic variability and pathogenicity among polish isolates of Bipolaris sorokiniana from spring barley. J Plant Pathol 93:291–302

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brondani C, Brondani RPV, Garrido LR, Ferreira ME (2000) Development of microsatellite markers for the genetic analysis of Magnaporthe grisea. Genet Mol Biol 23:753–762

    Article  CAS  Google Scholar 

  • Bruno AC, Urashima AS (2001) Inter-relação sexual de Magnaporthe grisea do trigo com a brusone de outros hospedeiros. Fitopatol Bras 26:21–26

    Article  Google Scholar 

  • Busso C, Kaneshima EN, Franco FA, Castro-Prado MAA (2007) Genetic and molecular characterization of pathogenic isolates of Pyricularia grisea from wheat (Triticum aestivum Lam.) and triticale (x Triticosecale Wittmack) in the state of Paraná. Brazil. Rev Iberoam Micol 24:167–170

    Article  Google Scholar 

  • Castelo AT, Martins W, Gao GR (2002) TROLL-tandem repeat occurrence locator. Bioinformatics 18:634–636

    Article  CAS  PubMed  Google Scholar 

  • Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693

    Article  CAS  PubMed  Google Scholar 

  • Cruz MF, Maciel JLN, Prestes AM, Bombonatto EAS, Pereira JF, Consoli L (2009) Caracterização genética e fenotípica de isolados de Pyricularia grisea do trigo. Trop Plant Pathol 34:393–401

    Article  Google Scholar 

  • Cruz MF, Prestes AM, Maciel JLN, Scheeren PL (2010) Resistência parcial à brusone de genótipos de trigo comum e sintético nos estádios de planta jovem e de planta adulta. Trop Plant Pathol 35:024–031

    Article  Google Scholar 

  • Cruz CD, Bockus W, Pedley K, Peterson G, Stack J, Tang X, Valent B (2011) Resistant among U.S. wheat (Triticum aestivum) cultivars to the wheat pathotype of Magnaporthe oryzae. Phytopathology 101(Suppl.):s220

    Google Scholar 

  • Dutech C, Enjalbert J, Fournier E, Delmotte F, Barrès B, Carlier J, Tharreau D, Giraud T (2007) Challenges of microsatellite isolation in fungi. Fungal Genet Biol 44:933–949

    Article  CAS  PubMed  Google Scholar 

  • Duveiller E, Hodson D, Tiedmann A (2010) Wheat blast caused by Magnaporthe grisea: a reality and new challenge for wheat research. In: 8th International Wheat Conference, 2010, Saint Petersburg, Russia. 8th International Wheat Conference - Abstracts. Saint Petersburg: Vavilov Research Institute of Plant Industry. pp 247–248

  • Galbieri R, Urashima AS (2008) Caracterização, compatibilidade e ocorrência de reprodução sexual entre isolados de Pyricularia grisea de diferentes hospedeiros. Summa Phytopathol 34:22–28

    Article  Google Scholar 

  • Goulart ACP, Paiva FA (1990) Perdas em trigo (Triticum aestivum) acusadas por Pyricularia oryzae. Fitopatol Bras 15:120

    Google Scholar 

  • Goulart ACP, Paiva FA (1992) Incidência da brusone (Pyricularia oryzae) em diferentes cultivares de trigo (Triticum aestivum) em condições de campo. Fitopatol Bras 17:321–325

    Google Scholar 

  • Goulart ACP, Paiva FA (1993) Response of wheat cultivars and breeding lines to blast (Pyricularia grisea) under field conditions, 1991. Ann Wheat Newsl 9:109–112

    Google Scholar 

  • Goulart ACP, Paiva FA (2000) Perdas no rendimento de grãos de trigo causada por Pyricularia grisea, nos anos de 1991 e 1992, no Mato Grosso do Sul. Summa Phytopathol 26:279–282

    Google Scholar 

  • Goulart ACP, Sousa PG, Urashima AS (2007) Danos em trigo causados pela infecção de Pyricularia grisea. Summa Phytopathol 33:358–363

    Article  Google Scholar 

  • Igarashi S (1990) Update on wheat blast (Pyricularia oryzae) in Brazil. In: Saunders DA (Ed) A proceeding of the International Conference - wheat for nontraditional warm areas. CIMMYT, Mexico. p. 480–483

  • Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS (1986) Pyricularia em trigo. 1. Ocorrência de Pyricularia sp. no estado do Paraná. Fitopatol Bras 11:351–352

    Google Scholar 

  • Kaye C, Milazzoa J, Rozenfeldb S, Lebrunc MH, Tharreau D (2003) The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genet Biol 40:207–214

    Article  CAS  PubMed  Google Scholar 

  • Kijas JM, Fowler JC, Garbett CA, Thomas MR (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques 16:656–662

    CAS  PubMed  Google Scholar 

  • Kim NS, Park NI, Kim SH, Kim ST, Han SS, Kang KY (2000) Isolation of TC/AG repeat microsatellite sequences for fingerprinting rice blast fungus and their possible horizontal transfer to plant species. Mol Cells 10:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kistler HC (1997) Genetic diversity in the plant-pathogenic fungus Fusarium oxysporum. Phytopathology 87:474–479

    Article  CAS  PubMed  Google Scholar 

  • Kohli MM, Mehta YR, Guzman E, de Viedma L, Cubilla LE (2011) Pyricularia blast: a threat to wheat cultivation. Czech J Genet Plant Brred 47:s130–s134

    Google Scholar 

  • Lebrun MH, Capy MP, Garcia N, Dutertre M, Brygoo Y, Notteghem JL, Valès M (1990) Biology and genetics of Pyricularia oryzae and P. grisea populations: current situation and development of RFLP markers. In: Rice Genetics Conference, Los Banos, IRRI, pp 1–12

  • Lim S, Notley-McRobb L, Lim M, Carter DA (2004) A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genet Biol 41:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Maciel JLN (2011) Magnaporthe oryzae, the blast pathogen: current status and options for its control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 6:1–8

    Article  Google Scholar 

  • Martins W, de Sousa D, Proite K, Guimaraes P, Moretzsohn M, Bertioli D (2006) New softwares for automated microsatellite marker development. Nucl Acids Res 34:e31

    Article  PubMed  Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  • Mehta YR, Riede CR, Campos LAC, Kohli MM (1992) Integrated management of major wheat diseases in Brazil: an example for the Southern Cone region of Latin America. Crop Prot 11:517–524

    Article  Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI, Camargo LEA, Fungaro MHP, Vieira MLC (2005) Development and characterization of microsatellite markers from the yellow passion fruit (Passiflora edulis f. flavicarpa). Mol Ecol Notes 5:331–333

    Article  CAS  Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307

    Article  CAS  Google Scholar 

  • Orbach MJ, Chumley FG, Valent B (1996) Electrophoretic karyotypes of Magnaporthe grisea pathogens of diverse grasses. Mol Plant Microbe Interact 9:261–271

    Article  CAS  Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

    Article  CAS  PubMed  Google Scholar 

  • Prabhu AS, Filippi MC, Castro N (1992) Pathogenic variation among isolate of Pyricularia oryzae infecting rice, wheat and grasses in Brazil. Trop Pest Manag 38:367–371

    Article  Google Scholar 

  • Prestes AM, Arendt PF, Fernandes JMC, Scheeren PL (2007) Resistance to Magnaporthe grisea among Brazilian wheat genotypes. In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environment. Springer, Dordrecht, pp 119–123

    Chapter  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Saghai Maroof MA, Biyashev RM, Yang G, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    Article  CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Specht CA, Dirusso CC, Novotny CP, Ullrich RC (1982) A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal Biochem 119:158–163

    Article  CAS  PubMed  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  CAS  PubMed  Google Scholar 

  • Tufan HA, McGrann GRD, MacCormack R, Boyd LA (2012) TaWIR1 contributes to post-penetration resistance to Magnaporthe oryzae, but not Blumeria graminis f. sp. tritici, in wheat. Mol Plant Pathol 13:653–665

    Article  CAS  PubMed  Google Scholar 

  • Urashima AS, Kato H (1994) Varietal resistance and chemical control of wheat blast fungus. Summa Phytopathol 20:107–112

    CAS  Google Scholar 

  • Urashima AS, Igarashi S, Kato H (1993) Host range, mating type and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis 77:1211–1216

    Article  Google Scholar 

  • Urashima AS, Hashimoto Y, Don LD, Kusaba M, Tosa Y, Nakayashiki H, Mayama S (1999) Molecular analysis of the wheat blast population in Brazil with a homolog of retrotransposon MGR583. Ann Phytopathol Soc Jpn 65:429–436

    Article  CAS  Google Scholar 

  • Urashima AS, Lavorent NA, Goulart ACP, Mehta YR (2004) Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopatol Bras 29:511–518

    Article  Google Scholar 

  • Urashima AS, Grosso CRF, Stabili A, Freitas EG, Silva CP, Netto DCS, Franco I, Mérola Bottan JH (2009) Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. In: Wang GL, Valent B (eds) Advances in Genetics. Springer, Genomics and Control of Rice Blast Disease, pp 267–277

    Google Scholar 

  • Valent B, Chumley FG (1994) Avirulence genes and mechanisms of genetic instability in the rice blast fungus. In: Zeigler RS, Leong S, Teng PS (eds) Rice Blast Disease. CAB International, UK, pp 111–134

    Google Scholar 

  • Wang Y, Kaye C, Bordat A, Adreit H, Milazzo J, Zheng X, Shen Y, Thearreau D (2005) Construction of genetic linkage map and location of avirulence genes from cross CH63 and TH16 of Magnaporthe grisea. Chinese J Rice Sci 19:160–166

    CAS  Google Scholar 

  • Zhan SW, Mayama S, Tosa Y (2008) Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome 51:216–221

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang G, Lin F, Wang Z, Jin G, Yang L, Wang Y, Chen X, Xu Z, Zhao X, Wang H, Lu J, Lu G, Wu W (2008) Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Fungal Genet Biol 45:1340–1347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the project entitled “Desenvolvimento e uso de marcadores de regiões hipervariáveis do genoma de Magnaporthe grisea do trigo para análise de isolados do fungo com virulência caracterizada” (project SEG code number 03.06.05.014.00.00 Agrofuturo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Leodato Nunes Maciel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, J.F., Consoli, L., de Souza Bombonatto, E.A. et al. Development of Genomic SSR Markers and Molecular Characterization of Magnaporthe oryzae Isolates from Wheat in Brazil. Biochem Genet 52, 52–70 (2014). https://doi.org/10.1007/s10528-013-9627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-013-9627-4

Keywords

Navigation