Skip to main content
Log in

Repeats in Transforming Acidic Coiled-Coil (TACC) Genes

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Transforming acidic coiled-coil proteins (TACC1, 2, and 3) are essential proteins associated with the assembly of spindle microtubules and maintenance of bipolarity. Dysregulation of TACCs is associated with tumorigenesis, but studies of microsatellite instability in TACC genes have not been extensive. Microsatellite or simple sequence repeat instability is known to cause many types of cancer. The present in silico analysis of SSRs in human TACC gene sequences shows the presence of mono- to hexa-nucleotide repeats, with the highest densities found for mono- and di-nucleotide repeats. Density of repeats is higher in introns than in exons. Some of the repeats are present in regulatory regions and retained introns. Human TACC genes show conservation of many repeat classes. Microsatellites in TACC genes could be valuable markers for monitoring numerical chromosomal aberrations and or cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitola M, Sadek CM, Gustafsson JA, Pelto-Huikko M (2003) Aint/Tacc3 is highly expressed in proliferating mouse tissues during development, spermatogenesis, and cogenesis. J Histochem Cytochem 51(4):455–469

    Article  PubMed  CAS  Google Scholar 

  • Albee AJ, Wiese C (2008) Xenopus TACC3/maskin is not required for microtubule stability but is required for anchoring microtubules at the centrosome. Mol Biol Cell 19(8):3347–3356

    Article  PubMed  CAS  Google Scholar 

  • Barr AR, Kilmartin JV, Gergely F (2010) CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J Cell Biol 189(1):23–39

    Article  PubMed  CAS  Google Scholar 

  • Barros TP, Kinoshita K, Hyman AA, Raff JW (2005) Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. J Cell Biol 170(7):1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8(6):451–463

    Article  PubMed  CAS  Google Scholar 

  • Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087.e3

    Google Scholar 

  • Brittle AL, Ohkura H (2005a) Centrosome maturation: aurora lights the way to the poles. Curr Biol 15(21):R880–R882

    Article  PubMed  CAS  Google Scholar 

  • Brittle AL, Ohkura H (2005b) Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. EMBO J 24(7):1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R, Kimmel M, Stivers DN, Davison LJ, Deka R (1997) Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci USA 94(3):1041–1046

    Article  PubMed  CAS  Google Scholar 

  • Chambers KG, MacAvoy ES (2000) Microsatellites: consensus and controversy. Comp Biochem Physiol B: Biochem Mol Biol 126:455–476

    Article  CAS  Google Scholar 

  • Conte N, Charafe-Jauffret E, Delaval B, Adélaïde J, Ginestier C, Geneix J, Isnardon D, Jacquemier J, Birnbaum D (2002) Carcinogenesis and translational controls: TACC1 is down-regulated in human cancers and associates with mRNA regulators. Oncogene 21(36):5619–5630

    Article  PubMed  CAS  Google Scholar 

  • Ejima Y, Yang L, Sasaki MS (2000) Aberrant splicing of the ATM gene associated with shortening of the intronic mononucleotide tract in human colon tumor cell lines: a novel mutation target of microsatellite instability. Int J Cancer 86:262–268

    Article  PubMed  CAS  Google Scholar 

  • Eslinger MR, Lauffart B, Still IH (2010) TACC3 (transforming, acidic coiled-coil containing protein 3). Atlas Genet Cytogenet Oncol Haematol 14(3):305–310

    Google Scholar 

  • Gergely F, Karlsson C, Still I, Cowell J, Kilmartin J, Raff JW (2000a) The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc Natl Acad Sci USA 97(26):14352–14357

    Article  PubMed  CAS  Google Scholar 

  • Gergely F, Kidd D, Jeffers K, Wakefield JG, Raff JW (2000b) D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J 19(2):241–252

    Article  PubMed  CAS  Google Scholar 

  • Gergely F, Draviam VM, Raff JW (2003) The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 17(3):336–341

    Article  PubMed  CAS  Google Scholar 

  • Guyot R, Vincent S, Bertin J, Samarut J, Ravel-Chapuis P (2010) The transforming acidic coiled coil (TACC1) protein modulates the transcriptional activity of the nuclear receptors TR and RAR. BMC Mol Biol 11:3

    Article  PubMed  Google Scholar 

  • Hancock JM, Santibanez-Koref MF (1998) Trinucleotide expansion diseases in the context of micro- and minisatellite evolution. EMBO J 17:5521–5524

    Article  PubMed  CAS  Google Scholar 

  • Hood FE, Royle SJ (2011) Pulling it together: the mitotic function of TACC3. Bioarchitecture 1(3):105–109

    Article  PubMed  Google Scholar 

  • Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22(5):253–259

    Article  PubMed  CAS  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18(7):1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18(1):30–38

    Article  PubMed  CAS  Google Scholar 

  • Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23(13):1683–1685

    Article  PubMed  CAS  Google Scholar 

  • Lauffart B, Howell SJ, Tasch JE, Cowell JK, Still IH (2002) Interaction of the transforming acidic coiled-coil 1 (TACC1) protein with ch-TOG and GAS41/NuBI1 suggests multiple TACC1-containing protein complexes in human cells. Biochem J 363(Pt 1):195–200

    Article  PubMed  CAS  Google Scholar 

  • Lauffart B, Vaughan MM, Eddy R, Chervinsky D, DiCioccio RA, Black JD, Still IH (2005) Aberrations of TACC1 and TACC3 are associated with ovarian cancer. BMC Womens Health 5:8

    Article  PubMed  Google Scholar 

  • Lauffart B, Sondarva GV, Gangisetty O, Cincotta M, Still IH (2007) Interaction of TACC proteins with the FHL family: implications for ERK signaling. J Cell Commun Signal 1(1):5–15

    Article  PubMed  Google Scholar 

  • Li LB, Bonini NM (2010) Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends Neurosci 33(6):292–298

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  PubMed  CAS  Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10:72–80

    PubMed  CAS  Google Scholar 

  • Mularoni L, Ledda A, Toll-Riera M, Albà MM (2010) Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res 20(6):745–754

    Article  PubMed  CAS  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2007) Dynamic mutations as digital genetic modulators of brain development, function and dysfunction. BioEssays 29(6):525–535

    Article  PubMed  CAS  Google Scholar 

  • Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19:295–296

    Article  PubMed  CAS  Google Scholar 

  • Payseur BA, Jing P, Haasl RJ (2011) A genomic portrait of human microsatellite variation. Mol Biol Evol 28(1):303–312

    Article  PubMed  CAS  Google Scholar 

  • Pearson NJ, Cullen CF, Dzhindzhev NS, Ohkura H (2005) A pre-anaphase role for a Cks/Suc1 in acentrosomal spindle formation of Drosophila female meiosis. EMBO Rep 6(11):1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Peterson TA, Adadey A, Santana-Cruz I, Sun Y, Winder A, Kann MG (2010) DMDM: domain mapping of disease mutations. Bioinformatics 26(19):2458–2459

    Article  PubMed  CAS  Google Scholar 

  • Raff JW (2002) Centrosomes and cancer: lessons from a TACC. Trends Cell Biol 12(5):222–225

    Article  PubMed  CAS  Google Scholar 

  • Sawaya SM, Lennon D, Buschiazzo E, Gemmell N, Minin VN (2012) Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth-death model. Genome Biol Evol 4(6):636–647

    Article  PubMed  Google Scholar 

  • Schneider L, Essmann F, Kletke A, Rio P, Hanenberg H, Wetzel W, Schulze-Osthoff K, Nürnberg B, Piekorz RP (2007) The transforming acidic coiled coil 3 protein is essential for spindle-dependent chromosome alignment and mitotic survival. J Biol Chem 282(40):29273–29283

    Article  PubMed  CAS  Google Scholar 

  • Schug MD, Hutter CM, Wetterstrand KA, Gaudette MS, Mackay TF, Aquadro CF (1998) The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol 15(12):1751–1760

    Article  PubMed  CAS  Google Scholar 

  • Stewart JP, Thompson A, Santra M, Barlogie B, Lappin TR, Shaughnessy J Jr (2004) Correlation of TACC3, FGFR3, MMSET and p21 expression with the t(4;14)(p16.3;q32) in multiple myeloma. Br J Haematol 126(1):72–76

    Article  PubMed  CAS  Google Scholar 

  • Still IH, Hamilton M, Vince P, Wolfman A, Cowell JK (1999a) Cloning of TACC1, an embryonicallyexpressed potentially transforming coiled coil containing gene from the 8p11 breast cancer amplicon. Oncogene 18(27):4032–4038

    Article  PubMed  CAS  Google Scholar 

  • Still IH, Vince P, Cowell JK (1999b) The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics 58(2):165–170

    Article  PubMed  CAS  Google Scholar 

  • Still IH, Vettaikkorumakankauv AK, DiMatteo A, Liang P (2004) Structure-function evolution of the transforming acidic coiled coil genes revealed by analysis of phylogenetically diverse organisms. BMC Evol Biol 4:16

    Article  PubMed  Google Scholar 

  • Still I, Eslinger MR, Lauffart B (2009) TACC1 (transforming, acidic coiled-coil containing protein 1). Atlas Genet Cytogenet Oncol Haematol 13(11):875–879

    Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981

    Article  PubMed  CAS  Google Scholar 

  • Trivedi S (2006) Comparison of simple sequence repeats in 19 Archaea. Genet Mol Res 5(4):741–772

    PubMed  CAS  Google Scholar 

  • Webster MT, Smith NG, Ellegren H (2002) Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments. Proc Natl Acad Sci USA 99(13):8748–8753

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am extremely grateful to Mr. Abhay Pendse for help with computational analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Trivedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10528_2013_9577_MOESM1_ESM.tif

Supplementary Fig. 1. Motif density of three gene sequences in nine mammals. Mammals, followed by gene designations TACC1, TACC2, or TACC3, are identified across the top. Nucleotide sequences are identified down the left. Color scale, SSRs per Kbp (TIFF 15595 kb)

10528_2013_9577_MOESM2_ESM.tif

Supplementary Fig. 2. Motif density in exons and introns of three gene sequences in nine mammals. Mammals and genes TACC1, TACC2, or TACC3, followed by codes for exon (E) or intron (I), are identified across the top. Nucleotide sequences are identified down the left. Color scale, SSRs per Kbp (TIFF 14188 kb)

10528_2013_9577_MOESM3_ESM.tif

Supplementary Fig. 3. Conservation of repeats by class in TACC1, TACC2, and TACC3 gene sequences of eight mammals, as a percentage of human TACC sequences. Mammals, followed by classes (mono- through hexa-nucleotide), are identified across the top. Genes, followed by total, exon, or intron, are identified down the left. Color scale, percentage of human SSRs (TIFF 3556 kb)

10528_2013_9577_MOESM4_ESM.tif

Supplementary Fig. 4. Conservation of repeat motifs in TACC1, TACC2, and TACC3 gene sequences of eight mammals, as a percentage of human TACC sequences. Mammals and genes TACC1, TACC2, or TACC3 are identified across the top. Nucleotide sequences are identified down the left. Color scale, percentage of human SSRs (TIFF 6723 kb)

10528_2013_9577_MOESM5_ESM.tif

Supplementary Fig. 5. Conservation of repeat motifs in exons and introns of TACC1, TACC2, and TACC3 gene sequences of eight mammals, as a percentage of human TACC sequences. Mammals and genes TACC1, TACC2, or TACC3, followed by codes for exon (E) or intron (I), are identified across the top. Nucleotide sequences are identified down the left. Color scale, percentage of human SSRs (TIFF 8101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trivedi, S. Repeats in Transforming Acidic Coiled-Coil (TACC) Genes. Biochem Genet 51, 458–473 (2013). https://doi.org/10.1007/s10528-013-9577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-013-9577-x

Keywords

Navigation