Skip to main content
Log in

Genetic Differentiation of the Giant Honey Bee (Apis dorsata) in Thailand Analyzed by Mitochondrial Genes and Microsatellites

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Genetic diversity and population differentiation of the giant honey bee (Apis dorsata) in Thailand were examined. Six PCR-RFLP mitotypes were generated from digestion of the COI-COII, Cytb-tRNAser, ATPase6-8, and lrRNA genes with Dra I and Hin fI. Low genetic diversity (h=0.074, π=0.032%) and a lack of genetic population differentiation between A. dorsata originating from geographically different regions were observed from mtDNA polymorphisms (P > 0.05). In contrast, microsatellite (A14, A24, and A88) polymorphisms revealed a relatively high level of genetic diversity in A. dorsata (H o=0.68–0.74, average number of alleles per locus=6.0–9.0). Both A24 and A88 indicated significant population differentiation between bees from the north-to-central region (north, northeast, and central regions), peninsular Thailand, and Samui Island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  • Avise, J. C. (1994). Molecular Markers, Natural History and Evolution. Chapman and Hall, New York. p. 511.

    Google Scholar 

  • Birky C. W., Jr., Furest, P., and Maruyama, T. (1989). Organelle gene diversity under migration, mutation and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627.

    CAS  Google Scholar 

  • Cavalli-Sforza, L. L., and Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. Amer. J. Hum. Genet. 19:233–257.

    PubMed  CAS  Google Scholar 

  • Crow, J. F., and Kimura, M. (1965). Evolution in sexual and asexual populations. Am. Nat. 99:439–450.

    Article  Google Scholar 

  • Crozier, R. H., and Crozier, Y. C. (1993). The mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization. Genetics 133:97–117.

    PubMed  CAS  Google Scholar 

  • Delarua, P., Serrano, J., and Galian, J. (1998). Mitochondrial DNA variability in the Canary Islands honeybee (Apis mellifera L.). Mol. Ecol. 7:1543–1547.

    Article  CAS  Google Scholar 

  • Deowanish, S., Nakamura, J., Matsuka, M., and Kimura, K. (1996). mtDNA variation among subspecies of Apis cerana using restriction fragment length polymorphism. Apidologie 27:407–413.

    Google Scholar 

  • Dyer, F. C., and Seeley, T. D. (1994). Colony migration in the tropical honey bee Apis dorsata F. (Hymenoptera: Apidae). Insectes Soc. 41:129–140.

    Article  Google Scholar 

  • Estoup, A., Solignac, M., Harry, H., and Cornuet, J.-M. (1993). Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Res. 21:1427–1431.

    Article  PubMed  CAS  Google Scholar 

  • Estoup, A., Solignac, M., and Cornuet, J.-M. (1994). Precise assessment of the number of patriline and of genetic relatedness in honey bee colonies. Proc. R.l Soc. London, series B 258:1–7.

    Article  CAS  Google Scholar 

  • Estoup, A., Garnery, L., Solignac, M., and Cornuet, J.-M. (1995). Microsatellite variation in honey bee (Apis mellifera L.) populations: Hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140:679–695.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1993). Phylip (Phylogenetic Inference Package) Version 3.56c. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Franck, P., Garnery, L., Solignac M., and Cornuet, J.-M. (1998). The origin of west European subspecies of honeybee (Apis mellifera): New insights from microsatellite and mitochondrial data. Evolution 52:1119–1134.

    Article  CAS  Google Scholar 

  • Guo, S. W., and Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg proportion of multiple alleles. Biometrics 48:361–372.

    Article  PubMed  CAS  Google Scholar 

  • Koeniger, N., and Koeniger, G. (1980). Observations and experiments on migration and dance communication of Apis dorsata in Sri Lanka. J. Apic. Res. 19:21–34.

    Google Scholar 

  • Kraus, F. B., Koeniger, N., Tingek, S., and Moritz, R. F. A. (2005). Temporal genetic structure of a drone congregation area of the giant Asian honeybee (Apis dorsata). Naturwissenschaften 92:578–581.

    Article  PubMed  CAS  Google Scholar 

  • McElroy, D., Moran, P., Birmingham, E., and Kornfield, I. (1991). REAP (Restriction Enzyme Analysis Package) Version 4.0. University of Maine, Orono, Maine.

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    PubMed  Google Scholar 

  • Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press, New York. p. 512.

    Google Scholar 

  • Nei, M., and Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76:5269–5273.

    Article  Google Scholar 

  • Neumann, P., Koeniger, N., Koeniger, G., Tingek, S., Krygerll, P., and Moritz, R. F. A. (2000). Home-site fidelity in migratory honeybees. Nature 406:474–475.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell, M., Dillon, M. C., Wright, J. M., Bentzen, P., Merkouris, S., and Seeb, J. (1998). Genetic structuring among Alaskan Pacific herring populations identified using microsatellite variation. J. Fish. Biol. 53:150–163.

    Article  Google Scholar 

  • Parr, J., Oldroyd, B. P., and Kastberger, G. (2000). Giant honeybees return to their nest sites. Nature 406:475.

    Article  Google Scholar 

  • Parr, J., Oldroyd, B. P., Huettinger, E., and Kastberger, G. (2004). Genetic structure of an Apis dorsata population: The significance of migration and colony aggregation. J. Heredity 95:119– 126.

    Article  Google Scholar 

  • Raymond, M., and Rousset, F. (1995). GenePop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Heredity 86:248–250.

    Google Scholar 

  • Roff, D. A., and Bentzen, P. (1989). The statistical analysis of mitochondrial DNA polymorphisms: χ2 and the problems of small samples. Mol. Biol. Evol. 6:539–545.

    PubMed  CAS  Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., and Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sakagami, S. F., Matsumura, T., and Ito, K. (1980). Apis laboriosa in Himalaya, the little known world largest honeybee (Hymenoptera: Apidae). Insecta Matsumrana 19:47–77.

    Google Scholar 

  • Sihanuntavong, D., Sittipraneed. S., and Klinbunga, S. (1999). Mitochondrial DNA diversity and population structure of the honey bee (Apis cerana) in Thailand. J. Apic. Res. 38:211– 219.

    CAS  Google Scholar 

  • Sittipraneed, S., Laoaroon, S., Klinbunga, S., and Wongsiri, S. (2001a). Genetic differentiation of the honey bee (Apis cerana) in Thailand: Evidence from microsatellite polymorphism. J. Apic. Res. 40:9–16.

    CAS  Google Scholar 

  • Sittipraneed, S., Sihanunthavong, D., and Klinbunga, S. (2001b). Genetic differentiation of the honey bee (Apis cerana) in Thailand revealed by polymorphism of a large subunit of mitochondrial ribosomal DNA. Insectes. Soc. 48:266–272.

    Article  Google Scholar 

  • Smith, D. R., and Hagen, R. H. (1997). The biogeography of Apis cerana as revealed by mitochondrial DNA sequence data. J. Kansas Entomol. Soc. 69:294–310.

    Google Scholar 

  • Sylvester, H. A., Limbipichai, K., Wongsiri, S., Rinderer, T. E., and Mardan, M. (1998). Morphometric studies of Apis cerana in Thailand and the Malaysian Pennisula. J. Apic. Res. 37:137–145.

    Google Scholar 

  • Takezaki, N., and Nei, M. (1996). Genetic distance and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399.

    PubMed  CAS  Google Scholar 

  • Thapa, R., and Wongsiri, S. (1997). Eupatorium odoratum: A honey plant for beekeepers in Thailand. Bee World 78:175–178.

    Google Scholar 

  • Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370.

    Article  Google Scholar 

  • Wongsiri, S., Thapa, T., Oldroyd, B., and Burgett, D. M. (1996). A magic bee tree: Home to Apis dorsata. American Bee J. 136:796–799.

    Google Scholar 

  • Wongsiri, S., Chanchao, C., Lekprayoon, C., Wattanasermkit, K., Deowanish, S., and Leepitakrat, S. (2001). Honeybee diversity and management in the new millennium in Thailand. Proc. Seventh International Conference on Tropical Bees: Management and Diversity, 19–25 March 2000. Chiang Mai, Thailand. pp. 9–14.

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Departments of Biochemistry and Biology, Faculty of Science, Chulalongkorn University, for providing facilities. This work was supported by the Thailand Research Funds (TRF) Senior Scholar award to Prof. Dr. S. Wongsiri. This research was conducted in cooperation with Louisiana State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sittipraneed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insuan, S., Deowanish, S., Klinbunga, S. et al. Genetic Differentiation of the Giant Honey Bee (Apis dorsata) in Thailand Analyzed by Mitochondrial Genes and Microsatellites. Biochem Genet 45, 345–361 (2007). https://doi.org/10.1007/s10528-007-9079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9079-9

KEY WORDS:

Navigation