Skip to main content

Advertisement

Log in

Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Muskmelon (Cucumis melo L.) wilt caused by Fusarium oxysporum f. sp. melonis leads to severe economic losses. A bio-organic fertilizer (BIO) fortified with an antagonistic strain of Bacillus subtilis Y-IVI was used to control this disease. Pot experiments were carried out to investigate the efficacy and to elucidate biocontrol mechanisms for the disease. BIO significantly reduced the disease incidence. Population of F. oxysporum in plant shoots of the BIO treatment were about 1000-fold lower than the control. Population of Y-IVI remained high in muskmelon rhizosphere of the BIO treatment during the experiment. Concentration of antifungal lipopeptides, iturin A, in the BIO treatment was significantly higher than other treatments. Ten days after transplantation, the salicylic acid content in BIO-treated plant leaves was significantly higher than control. In conclusion, BIO effectively controlled muskmelon wilt, possibly because the antagonistic microbes effectively colonize the plant rhizosphere and shoots to preclude pathogen invasion. Furthermore, Y-IVI produces antifungal lipopeptides in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Borrero C, Ordovas J, Trillas MI, Aviles M (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterized by Biolog (R). Soil Biol Biochem 38:1631–1637

    Article  CAS  Google Scholar 

  • Chatterton S, Jayaraman J, Punja ZK (2008) Colonization of cucumber plants by the biocontrol fungus Clonostachys rosea f. catenulate. Biol Control 46:267–278

    Article  Google Scholar 

  • De Cal A, Sztejnberg A, Sabuquillo P, Melgarejo P (2009) Management of Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biol Control 5:480–486

    Article  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, Mot RD, Ben JJ, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • El-Hassan SA, Gowen SR (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. Phytopathology 154:148–155

    Article  Google Scholar 

  • Fracchia L, Perotti EB, Pidello A, Martinotti MG (2008) Compost: A promising vehicle for the inoculation of PGPR in agricultural soils? In: Fuchs JG, Kupper T, Tamm L, Schenk K (eds) Compost and digestate: sustainability, benefits, impacts for the environment and for plant production. Proceedings of the international congress CODIS, Solothurn, Switzerland, pp 111–112

    Google Scholar 

  • Garret SD (1970) Pathogenic root-infecting fungi. Cambridge University Press, London, UK

    Google Scholar 

  • Hsieh FC, Lin TC, Meng M, Kao SS (2008) Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide Iturin A. Curr Microbiol 56:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kachroo P, Yoshioka K, Shah J, Dooner HK, Klessig DF (2000) Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12:677–690

    PubMed  CAS  Google Scholar 

  • Kinsella K, Schulthess CP, Morris TF, Stuart JD (2009) Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol Biochem 41:374–379

    Article  CAS  Google Scholar 

  • Komada H (1975) Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev Plant Prot Res 8:114–125

    Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    Article  PubMed  CAS  Google Scholar 

  • Lang JJ, Hu J, Ran W, Xu YC, Shen QR (2011) Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol Fert Soils 48:191–203

    Article  Google Scholar 

  • Li L, Mo M, Qu Q, Luo H, Zhang KQ (2007) Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. Eur J Plant Pathol 117:329–340

    Article  CAS  Google Scholar 

  • Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl 55:673–683

    Article  Google Scholar 

  • Liu YX, Shi JX, Feng YG, Yang XM, Li X, Shen QR (2012) Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol Fert Soils. doi:10.1007/s00374-012-0740-z

    Google Scholar 

  • Ma Y, Chang ZZ, Zhao JT, Zhou MG (2008) Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biol Control 44:24–31

    Article  CAS  Google Scholar 

  • Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem 47:642–649

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Medina A, Pascual JA, Lloret E, Roldan A (2009) Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedling nurseries. J Sci Food Agric 89:1843–1850

    Article  Google Scholar 

  • Martínez-Medina A, Roldán A, Pascual JA (2011) Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Appl Soil Ecol 47:98–105

    Article  Google Scholar 

  • Minuto A, Garibaldi G (2001) Segnalazione di un avvizzimento non parassitario su colture di pomodoro cv Cuore di bue innestate su piede resistente. Informatore Fitopatologico 51:51–53

    Google Scholar 

  • Muslim A, Horinouchi H, Hyakumachi M (2003) Biological control of Fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience 44:77–84

    Article  Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: A review. Biocontrol Sci Technol 15:3–20

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Thonart P (2006) Resistance induced in plants by non-pathogenic microorganism’s elicitation and defense responses. In: Teixeira da Silva JA (ed) Floriculture ornamental and plant biotechnology advances and topical issues. Global Science Books, Tokyo, Japan, pp 447–463

    Google Scholar 

  • Pang YD, Liu XG, Ma YX, Chernin L, Berg G, Gao KX (2009) Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Ent S, Wees SCM (2009) Networking by small-molecules hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas-functional processes and ecological impact. Springer, Berlin, Germany, pp 123–136

    Chapter  Google Scholar 

  • Shoresh M, Harman GE (2010) Differential expression of maize chitinases in the presence or absence of Trichoderma harzianum strain T22 and indications of a novel exo-endo-heterodimeric chitinase activity. BMC Plant Biol 10:136

    Article  PubMed  Google Scholar 

  • Suárez-Estrella F, Vargas-Garcia C, Lopez CMJ, Capel JM (2007) Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum f. sp. melonis. Crop Prot 26:46–53

    Article  Google Scholar 

  • Tamietti G, Valentino D (2006) Soil solarization as an ecological method for the control of Fusarium wilt of melon in Italy. Crop Prot 25:389–397

    Article  Google Scholar 

  • Termorshuizen AJ, van Rijn E, van der Gaag DJ, Alabouvette C, Chen Y, Lagerlöf J, Malandrakis AA, Paplomatas EJ, Rämert B, Ryckeboer J, Steinberg C, Zmora-Nahum S (2006) Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biol Biochem 38:2461–2477

    Article  CAS  Google Scholar 

  • Tjamos EC (2000) Strategies in developing methods and applying techniques for the biological control of Verticillium dahliae. In: Tjamos EC, Rowe RC, Heale JB, Fravel DR (eds) Advances in verticillium: research and disease management. APS Press, St. Paul, USA, pp 249–252

    Google Scholar 

  • Turner JT, Backman PA (1991) Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis 75:347–353

    Article  Google Scholar 

  • van Loon LC, Bakker PAHM (2006) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZZ (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, The Netherlands, pp 39–66

    Chapter  Google Scholar 

  • van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Verberne MC, Brouwer N, Delbianco F, Linthorst HJM, Bol JF, Verpoorte R (2002) Method for the extraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem Anal 13:45–50

    Article  PubMed  CAS  Google Scholar 

  • Wu HS, Yang XM, Fan JQ, Miao WG, Ling N, Xu YC, Huang QW, Shen QR (2008) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 54:287–300

    Article  Google Scholar 

  • Yang XM, Chen LH, Yong XY, Shen QR (2011) Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fertil Soils 47:239–248

    Article  Google Scholar 

  • Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F (2008) Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J Microbiol Biotechnol 24:783–788

    Article  CAS  Google Scholar 

  • Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 11:87–97

    Article  Google Scholar 

  • Zhao QY, Dong CX, Yang XM, Mei XL, Ran W, Shen QR, Xu YC (2011a) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Appl Soil Ecol 47:67–75

    Article  Google Scholar 

  • Zhao QY, Shen QR, Ran W, Xiao TJ, Xu DB, Xu YC (2011b) Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.). Biol Fertil Soils 47:507–514

    Article  CAS  Google Scholar 

  • Zhou T, Paulitz C (1994) Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumber. J Phytopathol 142:51–63

    Google Scholar 

Download references

Acknowledgments

This work was supported by the China Science and Technology Ministry project “Basic Research on Fertilizer Saving and Efficiency Improvement for Sustainable Utilization of Farmland” (No. 2007CB109304), Jiangsu Provincial Key Technology R&D Program (No. BE2009672) and Suzhou Science and Technology Program (No. SNG201023). We would like to thank Dr. A. J. Miller from Rothamsted Research Station, UK, for revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchun Xu.

Additional information

Handling Editor: Choong-Min Ryu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Ran, W., Wang, H. et al. Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. BioControl 58, 283–292 (2013). https://doi.org/10.1007/s10526-012-9496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-012-9496-5

Keywords

Navigation