Skip to main content
Log in

Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

To establish a baseline sensitivity of Botrytis cinerea to pyrrolnitrin, an antibiotic produced by several biological control agents, 204 isolates were tested for sensitivity to pyrrolnitrin using a spore germination assay. The results showed that the isolates exhibited a wide range of sensitivity to pyrrolnitrin, with an 8.4-fold difference in EC50 (effective concentration to reduce spore germination by 50% comparing to the control) values between the least and the most sensitive isolates. The model-based clustering analysis indicates that the distribution of the EC50 values best fit a normal mixture model with three components and unequal variance. The less sensitive isolates were also multidrug resistant isolates. The efficacy of the pyrrolnitrin-producing Pseudomonas chlororaphis ChPhzS24 strain was tested in vitro and on tomato plants with isolates of B. cinerea having different EC50 values. Whatever the EC50 value of the isolates tested, no significant differences in sensitivity were observed towards this bacterium indicating an absence of resistance to this biological control agent within B. cinerea isolates and suggesting also that additional mechanisms of action are probably operated by this biological control agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajouz S, Nicot PC, Bardin M (2010) Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathol 59:556–566

    Article  CAS  Google Scholar 

  • Bardin M, Fargues J, Nicot PC (2008) Compatibility between biopesticides used to control grey mould, powdery mildew and whitefly on tomato. Biol Control 46:476–483

    Article  Google Scholar 

  • Boff P, Köhl J, Gerlagh M, de Kraker J (2002) Biocontrol of grey mould by Ulocladium atrum applied at different flower and fruit stages of strawberry. BioControl 47:193–206

    Article  Google Scholar 

  • Chapeland F, Fritz R, Lanen C, Gredt M, Leroux P (1999) Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea (Botryotinia fuckeliana). Pestic Biochem Physiol 64:85–100

    Article  CAS  Google Scholar 

  • Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212

    Article  CAS  Google Scholar 

  • De Waard MA (1997) Significance of ABC transporters in fungicide sensitivity and resistance. Pestic Sci 51:271–275

    Article  Google Scholar 

  • De Waard MA, Andrade AC, Hayashi K, Schoonbeek HJ, Stergiopoulos I, Zwiers L-H (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci 62:195–207

    Article  PubMed  Google Scholar 

  • Decognet V, Bardin M, Trottin-Caudal Y, Nicot PC (2009) Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse. Phytopathology 99:185–193

    Article  PubMed  CAS  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538

    Article  PubMed  CAS  Google Scholar 

  • Elad Y, Stewart A (2004) Microbial control of Botrytis spp. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Press, Dordrecht, pp 223–241

    Google Scholar 

  • Elad Y, Kirshner B, Yehuda N, Sztejnberg A (1998) Management of powdery mildew and gray mould of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl 43:241–251

    Article  Google Scholar 

  • Elmer PAG, Reglinski T (2006) Biosuppression of Botrytis cinerea in grapes. Plant Pathol 55:155–177

    Article  Google Scholar 

  • Fraley C, Raftery AE (2007) Model-based methods of classification: Using the mclust software in chemometrics. J Stat Softw 18:13

    Google Scholar 

  • Garbeva P, Voesenek K, van Elsas JD (2004) Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36:1453–1463

    Article  CAS  Google Scholar 

  • Hammer PE, Evensen KB, Janisiewicz WJ (1993) Postharvest control of Botrytis cinerea on cut flowers with pyrrolnitrin. Plant Dis 77:283–286

    Article  CAS  Google Scholar 

  • Helbig J (2002) Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. BioControl 47:85–99

    Article  Google Scholar 

  • Janisiewicz WJ, Roitman J (1988) Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700

    Article  Google Scholar 

  • Janisiewicz W, Yourman L, Roitman J, Mahoney N (1991) Postharvest control of blue mold and gray mold of apples and pears by dip treatment with pyrrolnitrin, a metabolite of Pseudomonas cepacia. Plant Dis 75:490–494

    Article  CAS  Google Scholar 

  • Jarvis RW (1977) Botryotinia and Botrytis species: taxonomy, physiology, and pathogenicity. A guide to the literature. Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Schoonbeek HJ, Pradier JM, Leroux P, De Waard MA, Hahn M (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PloS Pathog 5:e1000696

    Article  PubMed  Google Scholar 

  • Leroux P (2004) Chemical control of Botrytis and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Press, Dordrecht, pp 195–222

    Google Scholar 

  • Leroux P, Chapeland F, Desbrosses D, Gredt M (1999) Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Prot 18:687–697

    Article  CAS  Google Scholar 

  • Li H, Leifert C (1994) Development of resistance in Botryotinia fuckeliana (de Barry) Whetzel against the biological control agent Bacillus subtilis CL27. Z PflKrankh PflSchutz 101:414–418

    Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, JT de Souza (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547

    Article  PubMed  CAS  Google Scholar 

  • Schoonbeek H, del Sorbo G, de Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant Microbe Interact 14:562–571

    Article  PubMed  CAS  Google Scholar 

  • Schoonbeek H, Raaijmakers JM, MA de Waard (2002) Fungal ABC transporters and microbial interactions in natural environments. Mol Plant Microbe Interact 15:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, van den Berg G, Edel-Hermann V, Steinberg C, Gautheron N, Alabouvette C, CH de Vos, Lemanceau P, Raaijmakers JM (2004) Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant Microbe Interact 17:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Schouten A, Maksimova O, Cuesta-Arenas Y, van den Berg G, Raaijmakers JM (2008) Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol. Environ Microbiol 10:1145–1157

    Article  PubMed  CAS  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Utkhede RS, Mathur S (2006) Preventive and curative biological treatments for control of Botrytis cinerea stem canker of greenhouse tomatoes. BioControl 51:363–373

    Article  Google Scholar 

Download references

Acknowledgments

The authors grateful acknowledge Claire Troulet and Gisèle Riqueau for excellent technical assistance and Véronique Decognet and Christel Leyronas for providing isolates of Botrytis cinerea. This work was partly supported by the French National Research Agency (ANR-ADD ECOSERRE project). S.A. received a grant from the Syrian government to complete postgraduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bardin.

Additional information

Handling Editor: Jesus Mercado Blanco

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajouz, S., Walker, A.S., Fabre, F. et al. Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. BioControl 56, 353–363 (2011). https://doi.org/10.1007/s10526-010-9333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-010-9333-7

Keywords

Navigation