Skip to main content

Advertisement

Log in

Rooibos tea—in the cross fire of ROS, mitochondrial dysfunction and loss of proteostasis—positioned for healthy aging

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Impaired mitochondrial function and loss of cellular proteostasis control are key hallmarks of aging and are implicated in the development of neurodegenerative diseases. A common denominator is the cell’s inability to handle reactive oxygen species (ROS), leading to major downstream oxidative damage that exacerbates neuronal dysfunction. Although we have progressed in understanding the molecular defects associated with neuronal aging, many unanswered questions remain. How much ROS is required to serve cellular function before it becomes detrimental and how does the cell’s oxidative status impact mitochondrial function and protein degradation through autophagy? How does ROS regulate autophagy? Aspalathus linearis, also commonly known as rooibos, is an endemic South African plant that is gaining globally acclaim for its antioxidant properties and its role as functional medicinal beverage. In this article we dissect the role of rooibos in the context of the cell’s ROS handling capacity, mitochondrial function and autophagy activity. By addressing the dynamic relationship between these critical interconnected systems, and by evaluating the functional properties of rooibos, we unravel its position for preserving cell viability and promoting healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ai Pham-Huy L, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):82–96

    Google Scholar 

  • Alonso-Castro AJ, Zapata-Bustos R, Gomez-Espinoza G, Salazar-Olivo LA (2012) Isoorientin reverts TNF-alpha-induced insulin resistance in adipocytes activating the insulin signaling pathway. Endocrinology 153(11):5222–5230

    Article  CAS  PubMed  Google Scholar 

  • Anantharaman M, Tangpong J, Keller JN, Murphy MP, Markesbery WR, Kiningham KK, St. Clair DK (2006) β-amyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLh/NLh X PS-1 P264L/P264L double knock-in mouse model of Alzheimer’s disease. Am J Pathol 168(5):1608–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95(4):1111–1155

    Article  PubMed  PubMed Central  Google Scholar 

  • Bono-Yagüe J, Gómez-Escribano AP, Millán JM, Vázquez-Manrique RP (2020) Reactive species in huntington disease: are they really the radicals you want to catch? Antioxidants 9(7):1–35

    Article  Google Scholar 

  • Bordi M, Berg MJ, Mohan PS, Peterhoff CM, Alldred MJ, Che S, Ginsberg SD, Nixon RA (2016) Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12(12):2467–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brieger K, Schiavone S, Miller FJ, Krause KH (2012) Reactive oxygen species: from health to disease. Swiss Med Wkl 142:W13659

    CAS  Google Scholar 

  • Bubici C, Papa S, Dean K, Franzoso G (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B : molecular basis and biological significance. Oncogene 25(51):6731–6748

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R et al (2009) Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J 28(10):1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang KC, Liu PF, Chang CH, Lin YC, Chen YJ, Shu CW (2022) The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell Biosci 12(1):1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry A, Shi R, Luciani DS (2020) A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am J Physiol-Endocrinol Metab 318(2):E87–E101. https://doi.org/10.1152/ajpendo.00457.2019

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Sudji IR, Wang E, Joubert E, Van Wyk BE, Wink M (2013) Ameliorative effect of aspalathin from rooibos (Aspalathus linearis) on acute oxidative stress in Caenorhabditis elegans. Phytomedicine 20(1):380–386

    Article  PubMed  Google Scholar 

  • Chen T, Zhang X, Zhu G, Liu H, Chen J, Wang Y, He X (2020) Quercetin inhibits TNF-alpha induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine 99:e22241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davignon JL, Hayder M, Baron M, Boyer JF, Constantin A, Apparailly F et al (2013) Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology 52:590–598

    Article  CAS  PubMed  Google Scholar 

  • de Beer D, Miller N, Joubert E (2017) Production of dihydrochalcone-rich green rooibos (Aspalathus linearis) extract taking into account seasonal and batch-to-batch variation in phenolic composition of plant material. S Afr J Bot 110:138–143

    Article  Google Scholar 

  • De La Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimer’s Dis 9(2):167–181

    Article  Google Scholar 

  • Deng Y, Jiao C, Mi C, Xu B, Li Y, Wang F, Liu W, Xu Z (2015) Melatonin inhibits manganese-induced motor dysfunction and neuronal loss in mice: involvement of oxidative stress and dopaminergic neurodegeneration. Mol Neurobiol 51(1):68–88

    Article  CAS  PubMed  Google Scholar 

  • Dludla PV, Johnson R, Mazibuko-Mbeje SE, Muller CJF, Louw J, Joubert E, Orlando P, Silvestri S et al (2020) Fermented rooibos extract attenuates hyperglycemia-induced myocardial oxidative damage by improving mitochondrial energetics and intracellular antioxidant capacity. S Afr J Bot 131:143–150

    Article  CAS  Google Scholar 

  • Ebrahimpour S, Zakeri M, Esmaeili A (2020) Crosstalk between obesity, diabetes, and alzheimer’s disease: introducing quercetin as an effective triple herbal medicine. Ageing Res Rev 62:101095

    Article  CAS  PubMed  Google Scholar 

  • Fan X et al (2018) Isoorientin ameliorates APAP-induced hepatotoxicity via activation NRF2 antioxidative pathway: the involvement of AMPK/AKT/GSK3Β. Front Pharmacol 9:1–11

    Article  Google Scholar 

  • Fang C, Gu L, Smerin D, Mao S, Xiong X (2017) The interrelation between reactive oxygen species and autophagy in neurological disorders. Oxid Med Cell Longevity

  • Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR (2010) Under the ROS: thiol network is the principal suspect for autophagy commitment. Autophagy 6(7):999–1005

    Article  CAS  PubMed  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilani AH, Khan AU, Ghayur MN, Ali SF, Herzig JW (2006) Antispasmodic effects of Rooibos tea (Aspalathus linearis) is mediated predominantly through K+-channel activation. Basic Clin Pharmacol Toxicol 99(5):365–373

    Article  CAS  PubMed  Google Scholar 

  • Hattingh AC, van de Venter M, Koekemoer TC (2019) The effects of rooibos (Aspalathus linearis) on 3T3-L1 preadipocytes after the induction of mitochondrial dysfunction. J Funct Foods 55:184–192. https://doi.org/10.1016/j.jff.2019.02.017

    Article  CAS  Google Scholar 

  • Hofer SJ, Liang Y, Zimmermann A, Schroeder S, Dengjel J, Kroemer G, Eisenberg T, Sigrist SJ, Madeo F (2021) Spermidine-induced hypusination preserves mitochondrial and cognitive function during aging. Autophagy 17(8):2037–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong IS, Lee HY, Kim HP (2014) Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain. PLoS ONE 9(1):1–9

    Article  Google Scholar 

  • Jash K, Gondaliya P, Kirave P, Kulkarni B, Sunkaria A, Kalia K (2020) Cognitive dysfunction: a growing link between diabetes and Alzheimer’s disease. Drug Dev Res 81(2):144–164

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Dludla P, Joubert E, February F, Mazibuko S, Ghoor S et al (2016) Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high glucose induced shifts in substrate preference and apoptosis. Mol Nutr Food Res 60(4):922–934

    Article  CAS  PubMed  Google Scholar 

  • Johnson R et al (2017) The transcription profile unveils the cardioprotective effect of aspalathin against lipid toxicity in an in vitro H9c2 model. Molecules 22(2):219. https://doi.org/10.3390/molecules22020219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Beer DD, Dludla PV, Ferreira D, Muller CJF, Joubert E (2018) Aspalathin from Rooibos (Aspalathus linearis): a bioactive C-glucosyl dihydrochalcone with potential to target the metabolic syndrome. Planta Med 84(9–10):568–583

    CAS  PubMed  Google Scholar 

  • Johri A, Beal MF (2012) Antioxidants in Huntington’s disease. Biochim Biophys Acta 1822(5):664–674

    Article  CAS  PubMed  Google Scholar 

  • Joubert E, de Beer D (2011) Rooibos (Aspalathus linearis) beyond the farm gate: from herbal tea to potential phytopharmaceutical. S Afr J Bot 77(4):869–886

    Article  Google Scholar 

  • Joubert E, Winterton P, Britz TJ, Gelderblom WCA (2005) Antioxidant and pro-oxidant activities of aqueous extracts and crude polyphenolic fractions of rooibos (Aspalathus linearis). J Agric Food Chem 53(26):10260–10267

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Kim JE, Rjie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):2093–8144

    Article  Google Scholar 

  • Kimball SR, Gordon BS, Moyer JE, Dennis MD, Jefferson LS (2016) Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal 28(8):896–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krafczyk N, Glomb MA (2008) Characterization of phenolic compounds in rooibos tea. J Agric Food Chem 56(9):3368–3376

    Article  CAS  PubMed  Google Scholar 

  • Küpeli E, Asian M, Gürbüz I, Yesilada E (2004) Evaluation of in vivo biological activity profile of isoorientin. Zeitschrift Fur Naturforschung 59(11–12):787–790

    Article  PubMed  Google Scholar 

  • Lee W, Bae JS (2015) Anti-inflammatory effects of aspalathin and nothofagin from rooibos (Aspalathus linearis) in vitro and in vivo. Inflammation 38:1502–1516

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zheng T, Sang S, Lv L (2014) Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J Agric Food Chem 62:12152–12158

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Park HS, Choi JK, Lee IS, Choi HJ (2007) Isoorientin induces Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling. Arch Pharm Res 30(12):1590–1598

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Chen Y, Lv S, Tan S, Zhang S, Huang R et al (2015) Gypsophila elegans isoorientin attenuates CCl(4)-induced hepatic fibrosis in rats via modulation of NF-kappaB and TGF-beta1/Smad signaling pathways. Immunopharmacology 28(1):305–312

    Article  CAS  Google Scholar 

  • Lin R, Piao M, Song Y (2019) Dietary quercetin increases colonic microbial diversity and attenuates colitis severity in citrobacter rodentium-infected mice. Front Microbiol 10(1092):1–8

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Li L (2019) Targeting autophagy for the treatment of Alzheimer’s disease: challenges and opportunities. Front Mol Neurosci 12:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Vives-Bauza C, Acín-Peréz- R, Yamamoto A, Tan Y, Li Y, Magrané J, Stavarache MA, Shaffer S, Chang S, Kaplitt MG (2009) PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and α-synuclein aggregation in cell culture models of Parkinson’s disease. PLoS ONE 4(2):e4597

    Article  PubMed  PubMed Central  Google Scholar 

  • Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z (2013) The variability of autophagy and cell death susceptibility: unanswered questions. Autophagy 9(9):1270–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loos B, Klionsky DJ, Wong E (2017) Augmenting brain metabolism to increase macro-and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog Neurobiol 156:90–106

    Article  CAS  PubMed  Google Scholar 

  • López V et al (2022) Neuroprotective and anxiolytic potential of green rooibos (Aspalathus linearis) polyphenolic extract. Food Funct 13(1):91–101. https://doi.org/10.1039/d1fo03178c

    Article  CAS  PubMed  Google Scholar 

  • Luan G, Wang Y, Wang Z, Zhou W, Hu N, Li G et al (2018) Flavonoid glycosides from fenugreek seeds regulate glycolipid metabolism by improving mitochondrial function in 3T3-L1 adipocytes in vitro. J Agric Food Chem 66(12):3169–3178

    Article  CAS  PubMed  Google Scholar 

  • Lumkwana D, du Toit A, Kinnear C, Loos B (2017) Autophagic flux control in neurodegeneration: progress and precision targeting—Where do we stand? Prog Neurobiol 153:64–85

    Article  PubMed  Google Scholar 

  • Lumkwana D, Peddie C, Kriel J, Michie LL, Heathcote N, Collinson L, Kinnear C, Loos B (2022) Investigating the role of spermidine in a model system of alzheimer’s disease using correlative microscopy and super-resolution techniques. Front Cell Dev Biol 10

  • Luo J, Mills K, le Cessie S, Noordam R, van Heemst D (2020) Ageing, age-related diseases and oxidative stress: what to do next? Ageing Res Rev 57:100982

    Article  CAS  PubMed  Google Scholar 

  • Maduna T, du Toit A, Loos B (2021) Macroautophagy and chaperone-mediated autophagy in aging. In: Factors affecting neurological aging. Academic Press, pp 199–211

  • Mailloux RJ, Jin X, Willmore WG (2013) Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol 19(2):123–139

    Google Scholar 

  • Marnewick JL, Gelderblom WCA, Joubert E (2000) An investigation on the antimutagenic properties of South African herbal teas. Mutat Res/Genetic Toxicol Environ Mutagen 471(1–2):157–166

    Article  CAS  Google Scholar 

  • Mazibuko SE et al (2013) Amelioration of palmitate-induced insulin resistance in C2C12 muscle cells by rooibos (Aspalathus linearis). Phytomedicine 20(10):813–819. https://doi.org/10.1016/j.phymed.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  • Mazibuko-mbeje SE et al (2022) Aspalathin alleviates skeletal muscle insulin resistance and mitochondrial dysfunction 9973, pp 643–656

  • McKay DL, Blumberg JB (2006) A review of the bioactivity of South African Herbal Teas: Rooibos (Aspalathus linearis) and Honeybush (Cyclopia intermedia). Wiley InterScience 21(4):1–16

    Google Scholar 

  • Millar DA, Bowles S, Windvogel SL, Louw J, Muller CJF (2020) Effect of Rooibos (Aspalathus linearis) extract on atorvastatin-induced toxicity in C3A liver cells. J Cell Physiol 235(12):9487–9496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mthembu SX, Muller CJF, Dludla PV, Madoroba E, Kappo AP, Mazibuko-Mbeje SE (2021) Rooibos flavonoids, aspalathin, isoorientin, and orientin ameliorate antimycin a-induced mitochondrial dysfunction by improving mitochondrial bioenergetics in cultured skeletal muscle cells. Molecules 26(6289):1–15

    Google Scholar 

  • Muller CJF, Joubert E, De Beer D, Sanderson M, Malherbe CJ, Fey SJ, Louw J (2012) Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine 20(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Nabavi SF, Sureda A, Dehpour AR, Shirooie S, Silva AS, Devi KP, Ahmed T, Ishaq N et al (2018) Regulation of autophagy by polyphenols: paving the road for treatment of neurodegeneration. Biotechnol Adv 36(6):1768–1778

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(23):4081–4091

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer’s disease-locating the primary defect. Neurobiol Dis 43(1):38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ntsapi CM, Loos B (2021) Neurons die with heightened but functional macro-and chaperone mediated autophagy upon increased amyloid-ß induced toxicity with region-specific protection in prolonged intermittent fasting. Exp Cell Res 408(2):112840

    Article  CAS  PubMed  Google Scholar 

  • Ntsapi C, Du Toit A, Loos B (2019) Dietary impact on neuronal autophagy control and brain health

  • Ott M, Gogvadze V, Orrenius S et al (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  • Pajares M, Cuadrado A, Engedal N, Jirsova Z, Cahova M (2018) The role of free radicals in autophagy regulation: Implications for ageing. Oxid Med Cell Longevity 1–19

  • Pallauf K, Rimbach G (2013) Autophagy, polyphenols and healthy ageing. Ageing Res Rev 12(1):237–252

    Article  CAS  PubMed  Google Scholar 

  • Pantsi WG, Marnewick JL, Esterhuyse AJ, Rautenbach F, Van Rooyen J (2011) Rooibos (Aspalathus linearis) offers cardiac protection against ischaemia/reperfusion in the isolated perfused rat heart. Phytomedicine 18(14):1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Pretorius L, Smith C (2022) Aspalathus linearis (Rooibos) and agmatine may act synergistically to beneficially modulate intestinal tight junction integrity and inflammatory profile. Pharmaceuticals 15(9):1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S (2014) Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 53(4):521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson M et al (2014) Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine 21(2):109–117. https://doi.org/10.1016/j.phymed.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Nishida N, Shimada M (2018) A beneficial role of rooibos in diabetes mellitus: a systematic review and meta-analysis. Molecules 23(4):1–15

    Article  Google Scholar 

  • Senesi P, Ferrulli A, Luzi L, Terruzzi I (2021) Diabetes mellitus and cardiovascular diseases: nutraceutical interventions related to caloric restriction. Int J Mol Sci 22:7772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinjman PW, Joubert E, Ferreira D, Li XC, Ding Y, Green IR, Gelderblom WCA (2009) Antioxidant activity of the dihydrochalcones aspalathin and nothofagin and their corresponding flavones in relation to other rooibos (Aspalathus linearis) flavonoids, epigallocatechin gallate, and Trolox. J Agric Food Chem 57(15):6678–6684

    Article  Google Scholar 

  • Son Y, Cheong Y-K, Kim N-H, Chung H-T, Kang DG, Pae H-O (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduction 2011:1–6

    Article  Google Scholar 

  • Son MJ, Minakawa M, Miura Y, Yagasaki K (2013) Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur J Nutr 52(6):1607–1619

    Article  CAS  PubMed  Google Scholar 

  • Standley L, Winterton P, Marnewick JL, Gelderblom WCA, Joubert E, Britz TJ (2001) Influence of processing stages on antimutagenic and antioxidant potentials of rooibos tea. J Agric Food Chem 49(1):114–117

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow RH (2018) Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimer’s Dis 62(3):1403–1416

    Article  CAS  Google Scholar 

  • Tavassolifar MJ, Vodjgani M, Salehi Z, Izad M (2020) The influence of reactive oxygen species in the immune system and pathogenesis of multiple sclerosis. Autoimmune Dis

  • Theart RP, Kriel J, Du Toit A, Loos B, Niesler TR (2020) Mitochondrial event localiser (MEL) to quantitativelydescribe fission, fusion and depolarisation in the three-dimensional space. PLoS ONE 15(12):e0229634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villaño D, Pecorari M, Testa MF, Raguzzini A, Stalmach A, Crozier A, Tubili C, Serafini M (2010) Unfermented and fermented rooibos teas (Aspalathus linearis) increase plasma total antioxidant capacity in healthy humans. Food Chem 123(3):679–683

    Article  Google Scholar 

  • Wang X, Wang W, Li L, Perry G, Lee H, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’ s disease. Biochim Biophys Acta 1842:1240–1247

    Article  CAS  PubMed  Google Scholar 

  • Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 422(2):207–218

    Article  Google Scholar 

  • Wu Y, Chen M, Jiang J (2019) Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling. Mitochondrion 49:35–45

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Xia C, Li S, Du L, Zhang L, Zhou R (2014) Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity. Redox Biol 3:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L et al (2015) Orientin alleviates cognitive deficits and oxidative stress in Aβ1-42-induced mouse model of Alzheimer’s disease. Life Sci 121:104–109. https://doi.org/10.1016/j.lfs.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’ s disease. Oxid Med Cell Longev 2013:1–10

    Google Scholar 

Download references

Funding

The authors wish to acknowledge financial support from the South African Rooibos Council (SARC), Grant number 25062021.

Author information

Authors and Affiliations

Authors

Contributions

CS and BL conceptualised and wrote the manuscript. CS prepared Figs. 13. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ben Loos.

Ethics declarations

Competing Interests

No competing interests exist.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smit, C., De Wet, S., Barron, T. et al. Rooibos tea—in the cross fire of ROS, mitochondrial dysfunction and loss of proteostasis—positioned for healthy aging. Biogerontology 24, 149–162 (2023). https://doi.org/10.1007/s10522-022-10012-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-022-10012-z

Keywords

Navigation