Skip to main content

Advertisement

Log in

MicroRNAs, DNA damage response and ageing

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Ageing is a multifactorial and integrated gradual deterioration affecting the most of biological process of cells. MiRNAs are differentially expressed in the cellular senescence and play important role in regulating of genes expression involved in features of ageing. The perception of miRNAs functions in ageing regulation can be useful in clarifying the mechanisms underlying ageing and designing of therapeutic strategies. The preservation of genomic integrity through DNA damage response (DDR) is related to the process of cellular senescence. The recent studies have shown that miRNAs has directly regulated the expression of numerous proteins in DDR pathways. In this review study, DDR pathways, miRNA biogenesis and functions, current finding on DDR regulations, molecular biology of ageing and the role of miRNAs in these processes have been studied. Finally, a brief explanation about the therapeutic function of miRNAs in ageing regarding its regulation of DDR has been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Components of the cell-cycle control system. Garland Science, New York

    Google Scholar 

  • Alers S, Löffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32:2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi P, Foiani M, Kumar A (2015) ATM and ATR signaling at a glance. J Cell Sci 128:4255–4262

    Article  CAS  PubMed  Google Scholar 

  • Bai X-Y, Ma Y, Ding R, Fu B, Shi S, Chen X-M (2011) miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22:1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J et al (2018) MiR-126 negatively regulates PLK-4 to impact the development of hepatocellular carcinoma via ATR/CHEK1 pathway. Cell Death Dis 9:1045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates DJ et al (2010) MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell 9:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bethke A, Fielenbach N, Wang Z, Mangelsdorf DJ, Antebi A (2009) Nuclear hormone receptor regulation of microRNAs controls developmental progression. Science 324:95–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaumik D et al (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 1:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310:1954–1957

    Article  CAS  PubMed  Google Scholar 

  • Bohnsack MT, Czaplinski K, Görlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon RA et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107

    Article  CAS  PubMed  Google Scholar 

  • Bratic A, Larsson N-G (2013) The role of mitochondria in aging. J Clin Investig 123:951

    Article  CAS  PubMed  Google Scholar 

  • Cannell IG et al (2010) p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci 107:5375–5380

    Article  CAS  PubMed  Google Scholar 

  • Capparelli C et al (2012) CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle 11:3599–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Card DAG, Hebbar PB, Li L, Trotter KW, Komatsu Y, Mishina Y, Archer TK (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28:6426–6438

    Article  PubMed  CAS  Google Scholar 

  • Cascales HS, Müllers E, Lindqvist A (2017) How the cell cycle enforces senescence. Aging (Albany NY) 9:2022

    Article  Google Scholar 

  • Chang S, Sharan SK (2012) Epigenetic control of an oncogenic microRNA, miR-155, by BRCA1. Oncotarget 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang S et al (2011) Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat Med 17:1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L et al (2012) miR-3928 activates ATR pathway by targeting Dicer. RNA Biol 9:1247–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-H, Chiou G-Y, Chen Y-W, Li H-Y, Chiou S-H (2010) MicroRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev 9:S59–S66

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang J, Liu Z, Zhang S, Sun T (2018) Specific microRNA signatures responsible for immune disturbance related to hip fracture in aged rats. J Orthop Surg Res 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi YE, Pan Y, Park E, Konstantinopoulos P, De S, D'Andrea A, Chowdhury D (2014) MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. Elife 3:e02445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cortez MA et al (2015) In vivo delivery of miR-34a sensitizes lung tumors to radiation through RAD51 regulation. Mol Ther Nucleic Acids 4:e270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  CAS  PubMed  Google Scholar 

  • Devi KP, Rajavel T, Daglia M, Nabavi SF, Bishayee A, Nabavi SM (2017) Targeting miRNAs by polyphenols: novel therapeutic strategy for cancer. In: Seminars in Cancer Biology. Elsevier, Amsterdam

  • Di Francesco A, De Pittà C, Moret F, Barbieri V, Celotti L, Mognato M (2013) The DNA-damage response to γ-radiation is affected by miR-27a in A549 cells. Int J Mol Sci 14:17881–17896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The Hallmarks of Aging. Cell 153:1194–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elia L et al (2009) Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120:2377–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang C et al (2017) MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway. Sci Rep 7:40384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooqi AA, Majeed SMK, Mansoor Q, Ismail M (2015) Population-specific genetic variation at microRNA-629-binding site in the 3'-UTR of NBS1 gene in prostate cancer patients. J Exp Therap Oncol 11:161–163

    CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Frenk S, Houseley J (2018) Gene expression hallmarks of cellular ageing. Biogerontology 19:1–20

    Article  CAS  Google Scholar 

  • Gabbianelli R, Malavolta M (2018) Epigenetics in ageing and development. Elsevier, Amsterdam

    Book  Google Scholar 

  • Galluzzi L et al (2010) miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 70:1793–1803

    Article  CAS  PubMed  Google Scholar 

  • Gao S et al (2017) MicroRNA-155, induced by FOXP3 through transcriptional repression of BRCA1, is associated with tumor initiation in human breast cancer. Oncotarget 8:41451

    PubMed  PubMed Central  Google Scholar 

  • Garcia AI et al (2011) Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med 3:279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparini P et al (2014) Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci 111:4536–4541

    Article  CAS  PubMed  Google Scholar 

  • Ghorai A, Ghosh U (2014) miRNA gene counts in chromosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Genet 5:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu S, Rong H, Zhang G, Kang L, Yang M, Guan H (2016) Functional SNP in 3′-UTR MicroRNA-binding site of ZNF350 confers risk for age-related cataract. Hum Mutat 37:1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Guo X et al (2013) Estrogen receptor α regulates ATM expression through miRNAs in breast cancer. Clin Cancer Res 19:4994–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo P, Lan J, Ge J, Nie Q, Guo L, Qiu Y, Mao Q (2014) MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia–telangiectasia mutated. Exp Cell Res 320:200–208

    Article  CAS  PubMed  Google Scholar 

  • Harrison DE et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harte MT et al (2014) NF-κB is a critical mediator of BRCA1-induced chemoresistance. Oncogene 33:713

    Article  CAS  PubMed  Google Scholar 

  • Herranz D, Muñoz-Martin M, Cañamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herzog R, Zendedel A, Lammerding L, Beyer C, Slowik A (2017) Impact of 17beta-estradiol and progesterone on inflammatory and apoptotic microRNA expression after ischemia in a rat model. J Steroid Biochem Mol Biol 167:126–134

    Article  CAS  PubMed  Google Scholar 

  • Heyn H et al (2011) MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int J Cancer 129:2797–2806

    Article  CAS  PubMed  Google Scholar 

  • Hoey C et al (2018) Mi RNA-106a and prostate cancer radioresistance: a novel role for LITAF in ATM regulation. Mol Oncol 12:1324–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzenberger M et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  CAS  PubMed  Google Scholar 

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Klein JD, Mitch WE, Zhang L, Martinez I, Wang XH (2014) MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging (Albany NY) 6:160

    Article  CAS  PubMed Central  Google Scholar 

  • Hu B et al (2017) MiR-21-mediated radioresistance is via promoting repair of DNA double strand breaks. J Biol Chem M116:772392

    Google Scholar 

  • Huang J-W et al (2013a) Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity. Mol Cancer Res 11:1564–1573

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Alvarez A, Hu B, Cheng S-Y (2013b) Noncoding RNAs in cancer and cancer stem cells. Chin J Cancer 32:582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas P, Jackson SP (2009) Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J Biol Chem 284:9558–9565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hühn D, Kousholt A, Sørensen CS, Sartori A (2015) miR-19, a component of the oncogenic miR-17∼ 92 cluster, targets the DNA-end resection factor CtIP. Oncogene 34:3977

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim YH et al (2012) PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2(11):1036–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joaquin á, Watson R (2003) Cell cycle regulation by the B-Myb transcription factor. Cell Mol Life Sci 60:2389–2401

    Article  CAS  PubMed  Google Scholar 

  • Joo JH, Hong IK, Kim NK, Choi E (2018) Trichosanthes kirilowii extract enhances repair of UVB radiation-induced DNA damage by regulating BMAL1 and miR-142-3p in human keratinocytes. Mol Med Rep 17:877–883

    CAS  PubMed  Google Scholar 

  • Jung HJ, Suh Y (2014) Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 41:465–472

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanellopoulou C, Monticelli S (2008) A role for microRNAs in the development of the immune system and in the pathogenesis of cancer. In: Seminars in cancer biology. Elsevier, Amsterdam, pp 79–88

  • Kawai S, Amano A (2012) BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol 197:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26:775–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kumaraswamy E et al (2015) BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function. Oncogene 34:4333

    Article  CAS  PubMed  Google Scholar 

  • La Rocca G, Badin M, Shi B, Xu SQ, DeAngelis T, Sepp-Lorenzinoi L, Baserga R (2009a) Mechanism of growth inhibition by MicroRNA 145: The role of the IGF-I receptor signaling pathway. J Cell Physiol 220:485–491

    Article  PubMed  CAS  Google Scholar 

  • La Rocca G, Shi B, Badin M, De Angelis T, Sepp-Lorenzino L, Baserga R (2009b) Growth inhibition by microRNAs that target the insulin receptor substrate-1. Cell Cycle 8:2255–2259

    Article  PubMed  Google Scholar 

  • Lamming DW (2014) Diminished mTOR signaling: a common mode of action for endocrine longevity factors. Springerplus 3:735

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J et al (2010) A pathway involving FXR and shp positively regulates hepatic SIRT1 levels via MIR-34A inhibition. J Biol Chemistry:jbc M109:094524

    Google Scholar 

  • Lee J-H et al (2015) MicroRNA-22 suppresses DNA repair and promotes genomic instability through targeting of MDC1. Can Res 75(7):1298–1310

    Article  CAS  Google Scholar 

  • Li G, Luna C, Qiu J, Epstein DL, Gonzalez P (2009) Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 130:731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Ma J, Han X, Jia Y, Yuan H, Shui S, Guo D (2018) MicroRNA-320 Enhances radiosensitivity of glioma through down-regulation of Sirtuin type 1 by directly targeting Forkhead box protein M1. Transl Oncol 11:205–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao X-H et al (2015) STAT3 regulated ATR via microRNA-383 to control DNA damage to affect apoptosis in A431 cells. Cell Signal 27:2285–2295

    Article  CAS  PubMed  Google Scholar 

  • Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH (2011) MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 47:163–174

    Article  CAS  PubMed  Google Scholar 

  • Lin F et al (2012) miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE 7:e38640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu Q (2011) ATM signals miRNA biogenesis through KSRP. Mol Cell 41:367–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Wang G, Chen Y, Li G, Yang D, Kang J (2014) A miR-590/Acvr2a/Rad51b axis regulates DNA damage repair during mESC proliferation. Stem Cell Rep 3:1103–1117

    Article  CAS  Google Scholar 

  • Liu G, Xue F, Zhang W (2015) miR-506: a regulator of chemo-sensitivity through suppression of the RAD51-homologous recombination axis. Chin J Cancer 34:44

    Article  PubMed Central  CAS  Google Scholar 

  • Lu H-J et al (2018) microRNA-136 inhibits proliferation and promotes apoptosis and radiosensitivity of cervical carcinoma through the NF-κB pathway by targeting E2F1. Life Sci 199:167–178

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane L-A, Murphy RP (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majidinia M, Yousefi B (2016) DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair 47:1–11

    Article  CAS  PubMed  Google Scholar 

  • Majidinia M, Yousefi B (2017) DNA repair and damage pathways in breast cancer development and therapy. DNA Repair 54:22–29

    Article  CAS  PubMed  Google Scholar 

  • Majidinia M, Darband SG, Kaviani M, Nabavi SM, Jahanban-Esfahlan R, Yousefi B (2018) Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair 66:30–41

    Article  PubMed  CAS  Google Scholar 

  • Manic G, Obrist F, Sistigu A, Vitale I (2015) Trial watch: targeting ATM–CHK2 and ATR–CHK1 pathways for anticancer therapy. Mol Cell Oncol 2:e1012976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mansour WY et al (2013) Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma. Radiother Oncol 106:147–154

    Article  CAS  PubMed  Google Scholar 

  • Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harbor Perspect Biol 5:a012716

    Article  CAS  Google Scholar 

  • Martin NT et al (2013) ATM–dependent miR-335 targets CtIP and modulates the DNA damage response. PLoS Genet 9:e1003505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez I, Cazalla D, Almstead LL, Steitz JA, DiMaio D (2011) miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci 108:522–527

    Article  CAS  PubMed  Google Scholar 

  • Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15:196–207

    Article  CAS  PubMed  Google Scholar 

  • Matamala N et al (2016) MicroRNA deregulation in triple negative breast cancer reveals a role of miR-498 in regulating BRCA1 expression. Oncotarget 7:20068

    Article  PubMed  PubMed Central  Google Scholar 

  • Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menghini R et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532

    Article  CAS  PubMed  Google Scholar 

  • Mersch J et al (2015) Cancers associated with BRCA 1 and BRCA 2 mutations other than breast and ovarian. Cancer 121:269–275

    Article  CAS  PubMed  Google Scholar 

  • Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Attari JA, Yousefi B, Majidinia M (2018) DNA damage response and repair in colorectal cancer: defects, regulation and therapeutic implications. DNA Repair 69:34–52

    Article  CAS  PubMed  Google Scholar 

  • Mitomo S et al (2008) Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 99:280–286

    Article  CAS  PubMed  Google Scholar 

  • Miyaki S et al (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60:2723–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskwa P et al (2011) miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41:210–220

    Article  CAS  PubMed  Google Scholar 

  • Mueller AC, Sun D, Dutta A (2013) The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene 32:1164

    Article  CAS  PubMed  Google Scholar 

  • Naccarati A et al (2012) Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis 33:1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja AK et al (2010) A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 24:447–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16 Ink4a and p19 Arf expression. Cell 135:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norbury CJ, Zhivotovsky B (2004) DNA damage-induced apoptosis. Oncogene 23:2797

    Article  CAS  PubMed  Google Scholar 

  • Olivieri F et al (2012) Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 133:675–685

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Bhattacharya A, Bhardwaj V, Jha V, Mandal AK, Mukerji M (2016) Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection. Sci Rep 6:32348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardini B et al (2013) Variation within 3'UTRs of base excision repair genes and response to therapy in colorectal cancer patients: a potential modulation of microRNAs binding. Clin Cancer Res 19:6044–6056

    Article  CAS  PubMed  Google Scholar 

  • Patel N, Garikapati KR, Pandita RK, Singh DK, Pandita TK, Bhadra U, Bhadra MP (2017) miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep 7:4263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32:2316.e2317–2316.e2327.

  • Petrovic N, Davidovic R, Bajic V, Obradovic M, Isenovic RE (2017) MicroRNA in breast cancer: the association with BRCA1/2. Cancer Biomark 19:119–128

    Article  CAS  PubMed  Google Scholar 

  • Pitto L et al (2009) miR-290 acts as a physiological effector of senescence in mouse embryo fibroblasts. Physiol Genomics 39:210–218

    Article  CAS  PubMed  Google Scholar 

  • Qin Y et al (2017) Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia 31:1123

    Article  CAS  PubMed  Google Scholar 

  • Rane S et al (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD (2002) E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev 16:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznick RM et al (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robida-Stubbs S et al (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala A (2005) B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 41:2479–2484

    Article  CAS  PubMed  Google Scholar 

  • Saleh L et al (2017) Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia. Leukemia 31:340

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11:230–241

    Article  CAS  PubMed  Google Scholar 

  • Selman C, Partridge L, Withers DJ (2011) Replication of extended lifespan phenotype in mice with deletion of insulin receptor substrate 1. PLoS ONE 6:e16144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Z-X et al (2009) Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun 381:597–601

    Article  CAS  PubMed  Google Scholar 

  • Shariati-Kohbanani M et al (2016) DNA Methylation and microRNA patterns are in association with the expression of BRCA1 in ovarian cancer. Cell Mol Biol (Noisy-le-grand) 62:16–23

    CAS  Google Scholar 

  • Song L et al (2011) miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS ONE 6:e25454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strum JC et al (2009) MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23:1876–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6:8474

    PubMed  PubMed Central  Google Scholar 

  • Sun C-C, Li S-J, Yuan Z-P, Li D-J (2016) MicroRNA-346 facilitates cell growth and metastasis, and suppresses cell apoptosis in human non-small cell lung cancer by regulation of XPC/ERK/Snail/E-cadherin pathway. Aging (Albany NY) 8:2509

    Article  CAS  Google Scholar 

  • Tamminga J, Kathiria P, Koturbash I, Kovalchuk O (2008) DNA damage-induced upregulation of miR-709 in the germline downregulates BORIS to counteract aberrant DNA hypomethylation. Cell Cycle 7:3731–3736

    Article  CAS  PubMed  Google Scholar 

  • Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanic M, Zajac M, Gómez-López G, Benítez J, Martínez-Delgado B (2012) Integration of BRCA1-mediated miRNA and mRNA profiles reveals microRNA regulation of TRAF2 and NFκB pathway. Breast Cancer Res Treat 134:41–51

    Article  CAS  PubMed  Google Scholar 

  • Tardif G, Hum D, Pelletier J-P, Duval N, Martel-Pelletier J (2009) Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord 10:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416

    Article  CAS  PubMed  Google Scholar 

  • Tong HL, Jiang RY, Zhang WW, Yan YQ (2017) MiR-2425-5p targets RAD9A and MYOG to regulate the proliferation and differentiation of bovine skeletal muscle-derived satellite cells. Sci Rep 7:418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thromb Haemost 107:605

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y-S, Lin C-S, Chiang S-L, Lee C-H, Lee K-W, Ko Y-C (2011) Areca nut induces miR-23a and inhibits repair of DNA double-strand breaks by targeting FANCG. Toxicol Sci 123:480–490

    Article  CAS  PubMed  Google Scholar 

  • van Almen GC et al (2011) MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10:769–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan G, Mathur R, Hu X, Zhang X, Lu X (2011) miRNA response to DNA damage. Trends Biochem Sci 36:478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan G et al (2013) DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. Cell Rep 3:2100–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Qian R, Zhang W, Chen S, Jin H, Hu R (2009) MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36:181–188

    Article  PubMed  CAS  Google Scholar 

  • Wang Y et al (2011a) MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol Cancer Res 9:1100–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2011b) Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30:1470

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Huang J-W, Calses P, Kemp CJ, Taniguchi T (2012) MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Can Res 72:1037–1046

    Article  CAS  Google Scholar 

  • Wang J et al (2013) Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis 4:e699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2015) MiR-499 enhances the cisplatin sensitivity of esophageal carcinoma cell lines by targeting DNA polymerase β. Cell Physiol Biochem 36:1587–1596

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2018a) miR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis 9:447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y et al (2018b) MiR-149 sensitizes esophageal cancer cell lines to cisplatin by targeting DNA polymerase β. J Cell Mol Med 22:3857–3865

    Article  CAS  PubMed Central  Google Scholar 

  • Williams AB, Schumacher B (2016) p53 in the DNA-damage-repair process. Cold Spring Harbor Perspect Med 6:a026070

    Article  CAS  Google Scholar 

  • Wronski A et al (2016) MicroRNA-206 is differentially expressed in Brca1-deficient mice and regulates epithelial and stromal cell compartments of the mouse mammary gland. Oncogenesis 5:e218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Wang P, Song C, Wang K, Yan R, Li J, Dai L (2015) Evaluation of miRNA-binding-site SNPs of MRE11A, NBS1, RAD51 and RAD52 involved in HRR pathway genes and risk of breast cancer in China. Mol Genet Genomics 290:1141–1153

    Article  CAS  PubMed  Google Scholar 

  • Xie Q-H, He X-X, Chang Y, Sun S-z, Jiang X, Li P-Y, Lin J-S (2011) MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2. 2.15 cells. Biochem Biophys Res Commun 410:440–445

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658

    Article  CAS  PubMed  Google Scholar 

  • Xu D et al (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193:409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Chen Z, Qin C, Song X (2014) miR-7 inhibits colorectal cancer cell proliferation and induces apoptosis by targeting XRCC2. OncoTargets Ther 7:325

    Article  CAS  Google Scholar 

  • Xu X et al (2015) miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget 6:3988

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Xu Z-P, Huang Y, Hamrick HE, Duerksen-Hughes PJ, Yu Y-N (2004) ATM and ATR: sensing DNA damage. World J Gastroenterol 10:155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H et al (2014) Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumor Biol 35:6557–6565

    Article  CAS  Google Scholar 

  • Yu X-Y, Song Y-H, Geng Y-J, Lin Q-X, Shan Z-X, Lin S-G, Li Y (2008) Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun 376:548–552

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wan G, Berger FG, He X, Lu X (2011) The ATM kinase induces microRNA biogenesis in the DNA damage response. Mol Cell 41:371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P et al (2014a) miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun 5:5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2014b) MicroRNA-181a functions as an oncomir in gastric cancer by targeting the tumour suppressor gene ATM. Pathol Oncol Res 20:381–389

    Article  CAS  PubMed  Google Scholar 

  • Zou Z et al (2016) miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation. Biochem J 473:2131–2139

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Kang L, Yang M, Wu J, Guan H (2018) MicroRNA binding mediated functional sequence variant in 3′-UTR of DNA repair Gene XPC in age-related cataract. Sci Rep 8:15198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Aging Reserch Institute of Tabriz University of Medical Science for fund suppord (Grant no: 62906) and Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences for kind advisory supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin Safa, Ata Mahmoodpoor or Bahman Yousefi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest. 

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidinia, M., Mir, S.M., Mirza-Aghazadeh-Attari, M. et al. MicroRNAs, DNA damage response and ageing. Biogerontology 21, 275–291 (2020). https://doi.org/10.1007/s10522-020-09862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-020-09862-2

Keywords

Navigation