Skip to main content

Advertisement

Log in

Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiken J, Bau E, Cap Z, Lopez M, Wagangat J, McKiernan S (2004) Mitochondrial DNA deletion mutations and sarcopenia. Ann N Y Acad Sci 959:412–423

    Google Scholar 

  • Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in transcriptional co-activator PGC-1. FASEB J 16:1879–1886

    CAS  PubMed  Google Scholar 

  • Bailey DM, McEneny J, Mathieu-Costello O, Henry RR, James PE, McCord JM et al (2010) Sedentary aging increases resting and exercise-induced intramuscular free radical formation. J Appl Physiol 109:449–456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartlett JD, Close GL, Drust B, Morton JP (2014) The emerging role of p53 in exercise metabolism. Sports Med 44:303–309

    PubMed  Google Scholar 

  • Betik AC, Thomas MM, Wright KJ, Riel CD, Hepple RT (2009) Exercise training from late middle age until senescence does not attenuate the declines in skeletal muscle aerobic function. Am J Physiol Regul Integr Comp Physiol 297:R744–R755

    CAS  PubMed  Google Scholar 

  • Booth FW, Laye MJ, Roberts MD (2011) Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol 111:1497–1504

    PubMed  Google Scholar 

  • Bori Z, Zhao Z, Kolati E, Fatouros IG, Jamurtas AZ, Dourousdos II et al (2012) The effects of aging, physical training, and a single bout of exercise on mitochondrial protein expression in human skeletal muscle. Exp Gerontol 47:417–424

    CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Flohe L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15:2335–2381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brooks SV, Vasilaki A, Larkin LM, McArdle A, Jackson MJ (2008) Repeated bouts of aerobic exercise lead to reductions in free radical generation and nuclear kB activation. J Physiol 596:3979–3990

    Google Scholar 

  • Bua EA, McKeirnan SH, Wanagat J, McKenzie D, Aiken J (2002) Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. J Appl Physiol 92:2617–2624

    PubMed  Google Scholar 

  • Bua EA, Johnson J, Herbst A, Delong B, McKenzie D, Salmat S, Aiken JM (2006) Mitochondrial DNA mutations accumulate to detrimental levels in aged human muscle fibres. Am J Hum Genet 79:469–480

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL et al (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carballal S, Bartesaghi S, Radi R (2014) Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta 1840:768–780

    CAS  PubMed  Google Scholar 

  • Close GL, Ashton T, McArdle A, Jackson MJ (2005) Microdialysis studies of extracellular reactive oxygen species production in skeletal muscle: factors influencing the reduction of cytochrome c and hydroxylation of salicylate. Free Radic Biol Med 39:1460–1467

    CAS  PubMed  Google Scholar 

  • Close GL, Kayani AC, Ashton T, McArdle A, Jackson MJ (2007) Release of superoxide from skeletal muscle of adult and old mice: an experimental test of the reductive hotspot hypothesis. Aging Cell 6:189–195

    CAS  PubMed  Google Scholar 

  • Cobley JN, Bartlett JD, Kayani AC, Murray SW, Louhelainen J, Donovan T et al (2012) PGC-1α transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology 13:621–631

    CAS  PubMed  Google Scholar 

  • Cobley JN, Sakellariou GK, Waldron S, Murray G, Burniston JG, Morton JP et al (2013) Life-long training attenuates residual genotoxic stress in the elderly. Longev Healthspan 2:11

    PubMed Central  PubMed  Google Scholar 

  • Cobley JN, Sakellariou GK, Owens DJ, Murray S, Waldron S, Gregson W et al (2014) Lifelong training preserves some redox-regulated adaptive responses following an acute exercise stimulus in aged human skeletal muscle. Free Radic Biol Med 70:23–32

    CAS  PubMed  Google Scholar 

  • Coffey VG, Hawley JA (2007) The molecular basis of training adaptation. Sports Med 37:737–763

    PubMed  Google Scholar 

  • Crozier SJ, Kimball SR, Emmert SW, Anthon JC, Jefferson LS (2005) Oral leucine administration stimulates protein Synthesis in rat skeletal muscle. J Nutr 135:376–382

    CAS  PubMed  Google Scholar 

  • Dai D, Chia YA, Marcinek DJ, Szeto HH, Rabinovtich PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6

    PubMed Central  PubMed  Google Scholar 

  • Debre F, Gomez-Cabrera MC, Nasciemnto AL, Sanchis-Gomar F, Martinez-Bello VE, Tresguerres JAF et al (2012) Age associated low mitochondrial biogenesis may be explained by a lack of response of PGC-1α to exercise training. Age 34:669–679

    Google Scholar 

  • Demicheli V, Quijano C, Alvarez B, Radi R (2007) Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide. Free Radic Biol Med 42:1359–1368

    CAS  PubMed  Google Scholar 

  • Deschenes MR (2004) Effects of aging on muscle fibre type and size. Sport Med 34:809–824

    Google Scholar 

  • Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    CAS  PubMed  Google Scholar 

  • Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 111:1717–1727

    Google Scholar 

  • Drew B, Phaneuf S, Driks A, Selman C, Gredilla R, Lezza A et al (2003) Effects of aging and caloric restriction on mitochondrial energy production in Gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 284:R474–R480

    CAS  PubMed  Google Scholar 

  • Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162–184

    CAS  PubMed  Google Scholar 

  • Evans EM, Racette SB, Petersen LR, Villareal DT, Greiwe JS, Holloszy JO (2005) Aerobic power and insulin action improve in response to endurance exercise training in healthy 77–78 year olds. J Appl Physiol 98:40–45

    PubMed  Google Scholar 

  • Faulkner JM, Larkin LM, Claflin DR, Brooks SV (2007) Age-related changes in the structure and function of skeletal muscles. Proc Aust Physiol Soc 38:69–75

    Google Scholar 

  • Fernadnez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S

    Google Scholar 

  • Fluck M (2006) Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 209:2239–2248

    CAS  PubMed  Google Scholar 

  • Forman HJ, Davies KJA, Ursini F (2014) How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 66:24–35

    CAS  PubMed  Google Scholar 

  • Frontera WR, Hughes VA, Lutz KJ, Evans WJ (1991) A cross-sectional study of muscle strength and mass in 45–78 year old men and women. J Appl Physiol 71:644–650

    CAS  PubMed  Google Scholar 

  • Ghosh S, Lertwattanarak R, Lefort N, Molina-Carrion M, Joya-Galeana J, Bowen BP et al (2011) Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes 60:2051–2060

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gibala M, Little JP, MacDonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590:1077–1084

    PubMed Central  CAS  PubMed  Google Scholar 

  • Godin R, Ascah A, Daussin FN (2010) Intensity-dependent activation of intracellular signaling pathways in skeletal muscle: role of fibre type recruitment during exercise. J Physiol 588:4073–4074

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gousillou G, Sgarioto N, Kapchinksy S, Purves-Smith F, Norris B, Pion CH et al (2014) Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 28:1621–1633

    Google Scholar 

  • Gutteridge JMC, Halliwell B (2010) Antioxidants: molecules, medicines, and myths. Biochem Biophys Res Commun 393:561–564

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMG (2007) Free Radicals in Biology & Medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  • Heath GW, Hagberg JM, Ehsani AA, Holloszy JO (1981) A physiological comparison of young and older endurance athletes. J Appl Physiol 51:634–640

    CAS  PubMed  Google Scholar 

  • Hiona A, Leeuwenburgh C (2008) The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol 43:23–33

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838

    CAS  PubMed  Google Scholar 

  • Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    CAS  PubMed  Google Scholar 

  • Hood DA (2001) Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157

    CAS  PubMed  Google Scholar 

  • Hood DA (2009) Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab 34:465–472

    CAS  PubMed  Google Scholar 

  • Irrcher R, Ljubicic V, Hood DA (2009) Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am J Physiol Cell Physiol 296:C116–C123

    CAS  PubMed  Google Scholar 

  • Iversen N, Krsutrup P, Rasmussen HN, Rasmussen UF, Saltin B, Pilegaard H (2011) Mitochondrial biogenesis and angiogenesis in muscle of the elderly. Exp Gerontol 46:670–678

    CAS  PubMed  Google Scholar 

  • Jackson MJ (2009) Redox regulation of adaptive responses of skeletal muscle to contractile activity. Free Radic Biol Med 47:1267–1275

    CAS  PubMed  Google Scholar 

  • Jackson MJ, McArdle A (2011) Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species. J Physiol 589:2139–2145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci USA 104:12017–12022

    PubMed Central  PubMed  Google Scholar 

  • Jang YC, Van Remmen H (2009) The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol 44:256–260

    CAS  PubMed  Google Scholar 

  • Jang YC, Van Remmen H (2011) Age-associated alterations of the neuromuscular junction. Exp Gerontol 46:193–198

  • Janssen I, Shepard P, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52:80–85

    PubMed  Google Scholar 

  • Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T et al (2008) Redox-based regulation of signal transduction: principles: pitfalls, and promises. Free Radic Biol Med 45:1–17

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J (2004) Acute exercise activates nuclear factor (NF)-KB signalling pathway in rat skeletal muscle. FASEB J 18:1499–1506

    CAS  PubMed  Google Scholar 

  • Ji LL, Gomez-Cabrera MC, Vina J (2006) Exercise and hormesis: activation of cellular antioxidant signalling pathway. Ann NY Acad Sci 1067:425–435

    CAS  PubMed  Google Scholar 

  • Joesph AM, Adhihttey PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguen LM et al (2012) The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low functioning elderly individuals. Aging Cell 11:801–809

    Google Scholar 

  • Kalyanaraman B, Usmar V, Davies KJA, Dennery PA, Forman RJ, Grisham MB et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kayani AC, Morton JP, McArdle A (2008) The exercise-induced stress response in skeletal muscle: failure during aging. Appl Physiol Nutr Metab 33:1033–1041

    CAS  PubMed  Google Scholar 

  • Khassaf M, Child RB, McArdle A, Brodie DA, Esanu C, Jackson MJ (2001) Time course of adaptive responses of human skeletal muscle to oxidative stress induced by non-damaging exercise. J Appl Physiol 90:1031–1036

    CAS  PubMed  Google Scholar 

  • Kholodenko B, Hancock JF, Kolch W (2010) Cell signalling ballet in space and time. Nat Rev Mol Cell Biol 11:414–426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koltai E, Hart N, Taylor AW, Goto S, Nyo JK, Davies KJ et al (2012) Age-associated declines in mitochondrial biogenesis are minimised by exercise training. Am J Physiol Regul Integr Comp Physiol 303:R127–R134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Konopka AR, Nair SK (2013) Mitochondrial and skeletal muscle health with advancing age. Mol Cell Endocrinol 379:19–29

    PubMed Central  CAS  PubMed  Google Scholar 

  • Konopka AR, Suer MK, Wolff CA, Harber MP (2014) Markers of human skeletal muscle mitochondrial biogenesis and quality control. Effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci 69:371–378

    CAS  PubMed  Google Scholar 

  • Lanza IR, Nair KS (2010) Regulation of skeletal muscle mitochondrial function: genes to proteins. Acta Physiol 199:529–547

    CAS  Google Scholar 

  • Lanza IR, Short DK, Short KR, Raghavakaimal S, Basu R, Joyner MJ et al (2008) Endurance exercise as a countermeasure for aging. Diabetes 57:2933–2942

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leick L, Wojtaszewski JFP, Johansen ST, Kiilerich K, Gomes G, Hellsten Y et al (2008) PGC-1α is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 294:E463–E474

    CAS  PubMed  Google Scholar 

  • Lexell J, Taylor CC, Sjostrum M (1988) What is the cause of ageing atrophy? Total number, size and proportion of different fibre types studied in whole vastus lateralis muscle from 15 to 83 year old men. J Neurol Sci 84:275–294

    CAS  PubMed  Google Scholar 

  • Little JP, Safdar A, Cermak N, Tarnopolsky MA, Gibala MJ (2010a) Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 298:R912–R917

    CAS  PubMed  Google Scholar 

  • Little JP, Safdar A, Wilkin GP, Tranopolsky MA, Gibala MJ (2010b) A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol 588:1011–1022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ljubicic V, Hood DA (2009a) Diminished contraction-induced intracellular signalling towards mitochondrial biogenesis in aged skeletal muscle. Aging Cell 8:394–404

    CAS  PubMed  Google Scholar 

  • Ljubicic V, Hood DA (2009b) Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content. Am J Physiol Endocrinol Metab 297:E749–E758

    CAS  PubMed  Google Scholar 

  • Ljubicic V, Joesph A, Adhihetty PJ, Huang JH, Saleem A, Uguccioni G et al (2009) Molecular basis for an attenuated mitochondrial plasticity in aged skeletal muscle. Aging 9:818–830

    Google Scholar 

  • Ljubicic V, Joseph AM, Saleem A, Uguccioni G, Collu-Marchese M, Lai RY et al (2010) Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta 1800:223–234

    CAS  PubMed  Google Scholar 

  • Lopez-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mahoney DJ, Praise G, Melov S, Safdar A, Tarnopolsky MA (2005) Analysis of global mRNA expression from human skeletal muscle during recovery from endurance exercise. FASEB J 19:1498–1500

    CAS  PubMed  Google Scholar 

  • Margaritelis NV, Kyparos A, Paschalis V, Theodorou AA, Panayiotou G, Zafeiridis A et al (2014) Reductive stress after exercise: the issue of redox individuality. Redox Biol 2:520–528

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez-Ruiz A, Cadenas S, Lamas S (2011) Nitric oxide signalling: classical, less classical and nonclassical mechanisms. Free Radic Biol Med 51:17–29

    CAS  PubMed  Google Scholar 

  • McArdle A, Patwell D, Vasilaki A, Griffiths RD, Jackson MJ (2001) Contractile-activity induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 280:C621–C627

    CAS  PubMed  Google Scholar 

  • McDonagh B, Sakellariou GK, Smith N, Brownridge P, Jackson MJ (2014) Differential cysteine labelling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging. J Prot Res. doi:10.1021/pr5006394

    Google Scholar 

  • McGlory C, White A, Treins C, Drust B, Close GL, MacLaren DPM et al (2014) Application of the [gamma-P-32] ATP kinase assay to study anabolic signaling in human skeletal muscle. J Appl Physiol 116:504–513

    PubMed Central  CAS  PubMed  Google Scholar 

  • McKenzie D, Bua E, McKiernan S, Cao Z, Wanagat J, Aiken JM (2002) Mitochondrial DNA deletion mutations: a causal role in sarcopenia. Euro J Biochem 269:2010–2015

    CAS  Google Scholar 

  • Melov A, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A (2007) Resistance exercise reverses aging in human skeletal muscle. PLoS ONE 2:e465

    PubMed Central  PubMed  Google Scholar 

  • Menshikova EV, Ritov VB, Fairfull L, Ferrel RE, Kelley DE, Goodpaster BH (2006) Effects of exercise on mitochondrial content and function in aging human muscle. J Gerontol 61:534–540

    Google Scholar 

  • Miller BF, Hamilton KL (2012) A perspective on the determination of mitochondrial biogenesis. Am J Physiol Endocrinol Metab 302:E496–E499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morton JP, MacLaren DPM, Cable NT, Bongers T, Griffiths RD, Campbell IT et al (2006) Time-course and differential responses of the major heat shock protein families in human skeletal muscle following acute non-damaging treadmill exercise. J Appl Physiol 101:176–182

    CAS  PubMed  Google Scholar 

  • Morton JP, Kayani AC, McArdle A, Drust B (2009) The exercise-induced stress response of skeletal muscle with specific emphasis on humans. Sports Med 39:643–662

    PubMed  Google Scholar 

  • Murphy MP, Holmgren A, Larsson N, Halliwell B, Chang CJ, Kalyanaraman B et al (2011) Unravelling the biological roles of reactive oxygen species. Cell Metab 13:361–366

    CAS  PubMed  Google Scholar 

  • Nordsborg NB, Lundby C, Leick L, Pilegaard H (2010) Relative workload determine exercise-induced increases in PGC-1alpaha mRNA. Med Sci Sports Exerc 42:1477–1484

    CAS  PubMed  Google Scholar 

  • Nyberg M, Blackwell JR, Damsgaard R, Jones AM, Hellsten Y, Mortensen SP (2012) Lifelong physical activity prevents an age-related reduction in arterial and skeletal muscle nitric oxide bioavailability in humans. J Physiol 590:5361–5370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Vina J, Hellensten Y (2014) Role of sedentary aging and lifelong physical activity on exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med 73:166–173

    CAS  PubMed  Google Scholar 

  • Pahor M, Blair SN, Espeland M, Fielding R, Gill TM, Guralink JM et al (2006) Effects of a physical activity intervention on measures of physical activity intervention on measures of physical performance: results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci 61:1157–1165

    PubMed  Google Scholar 

  • Palomero J, Pye D, Kabayo T, Spiller DG, Jackson MJ (2008) In situ detection and measurement of intracellular reactive oxygen species in single isolated mature skeletal muscle fibres by real-time fluorescence microscopy. Antioxid Redox Signal 10:1463–1474

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palomero J, Vasilaki A, Pye D, McArdle A, Jackson MJ (2013) Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibres at rest, but not during contractions. Am J Physiol Regul Integr Comp Physiol 305:R351–R358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pearson SJ, Young A, Macaluso A, Devito G, Nimmo MA, Cobbold M et al (2002) Muscle function in elite master weightlifters. Med Sci Sports Exerc 34:1199–1206

    PubMed  Google Scholar 

  • Pearson T, McArdle A, Jackson MJ (2014) Nitric oxide availability is increased in contracting skeletal muscle from aged mice, but does not differentially decrease muscle superoxide. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2014.10.505i

    PubMed  Google Scholar 

  • Perry CGR, Lally J, Holloway GP, Heigenhauser GJF, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson CM, Johannsen DL, Ravussin E (2012) Skeletal muscle mitochondria and aging: a review. J Aging Res 2012:194821

    PubMed Central  PubMed  Google Scholar 

  • Philp A, Chen A, Lan D, Meyer GA, Murphy A, Knapp AE et al (2011) Sirtuin 1 (SIRT1) deactylase activity is not required for mitochondrial biogenesis or peroxisome proliferator activate receptor-γ co-activator-1α (PGC-1α) deactylation following exercise. J Biol Chem 286:30561–30570

    PubMed Central  CAS  PubMed  Google Scholar 

  • Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL et al (2010) Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permealised fibres. Aging Cell 6:1032–1046

    Google Scholar 

  • Picard M, Taivassalo T, Gouspillou G, Hepple RT (2011a) Mitochondria: isolation, structure and function. J Physiol 589:4421–4431

    Google Scholar 

  • Picard M, Ritchie D, Thomas MM, Wright KJ, Hepple RT (2011b) Alterations in intrinsic mitochondrial function with aging are fibre type-specific and do not explain differential atrophy between muscles. Aging Cell 10:1047–1055

    CAS  PubMed  Google Scholar 

  • Picard M, Shirihai OS, Gentil BJ, Burelle Y (2013) Mitochondrial morphology transitions and functions: implications for retrograde signalling. Am J Physiol Regul Integr Comp Physiol 304:R393–R406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pilegaard H, Saltin B, Neufer DP (2003) Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546:851–858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pye D, Palomero J, Kabayo T, Jackson MJ (2007) Real-time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions. J Physiol 581:309–318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Radak Z, Bori Z, Kolati E, Fatourous GI, Jamaturas AZ, Douroudos II et al (2011) Age-dependent changes in 8-oxoguanine-DNA glyocloase activity are modulated by the adaptive response to physical exercise in human muscle. Free Radic Biol Med 51:417–423

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rennie MJ, Selby A, Atherton P, Smith K, Glover EL, Phillips SM (2010) Facts noise and wishful thinking: muscle protein turnover in aging and human disuse atrophy. Scand J Med Sci Sport 20:5–9

    CAS  Google Scholar 

  • Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ et al (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:151–156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 11:872–884

    Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygy SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434:113–118

    CAS  PubMed  Google Scholar 

  • Rowe GC, El-Khoury R, Patten IS, Rustin P, Arany Z (2012) PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS ONE 7:e41817

    PubMed Central  CAS  PubMed  Google Scholar 

  • Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C et al (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle. Diabetes 52:2874–28812

    CAS  PubMed  Google Scholar 

  • Safdar A, DeBeer J, Tarnopolsky MA (2010a) Dysfunctional Nrf2-Keap1 redox signalling in skeletal muscle of the sedentary old. Free Radic Biol Med 49:1487–1493

    CAS  PubMed  Google Scholar 

  • Safdar A, Hamadeh MJ, Kaczor JJ, Raha S, deBeer J, Tranopolsky MA (2010b) Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary adults. PLoS ONE 5:e10788

    Google Scholar 

  • Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA (2011) Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem 286:10605–10617

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A et al (2013) Studies of mitochondrial and non-mitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase (s) in the increase skeletal muscle superoxide generation that occurs following contractile activity. Antiox Redox Signal 18:603–621

    CAS  Google Scholar 

  • Sakellariou GK, Jackson MJ, Vasilaki A (2014) Redefining the major contributors to superoxide production in contracting skeletal muscle. Role of NAD(P)H oxidases. Free Radic Res 48:12–29

    CAS  PubMed  Google Scholar 

  • Saleem A, Hood DA (2013) Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53-Tfam-mitochondrial DNA complex in skeletal muscle. J Physiol 591:3625–3636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48:642–655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH et al (2006) PGC-1alpha protects form atrophy by suppressing FOXO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103:16260–16265

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    CAS  PubMed  Google Scholar 

  • Short KR, Vittone JL, Brigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896

    CAS  PubMed  Google Scholar 

  • Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sies H (2014) Role of metabolic H2O2 generation: redox signalling and oxidative stress. J Biol Chem. doi:10.1074/jbc.R113.544635

    PubMed  Google Scholar 

  • Stuart JA, Maddalena LA, Merilovich M, Robb EL (2014) A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 3:4

    PubMed Central  PubMed  Google Scholar 

  • Tanaka H, Seals DR (2008) Endurance exercise and performance in masters athletes: age-associated changes and underlying physiological mechanisms. J Physiol 586:55–63

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka H, DeSouza CA, Jones PP, Stevenson ET, Davy KP, Seals DR (1997) Greater decline in maximal aerobic capacity with age in physically active vs sedentary healthy women. J Appl Physiol 83:1947–1953

    CAS  PubMed  Google Scholar 

  • Timmons JA (2011) Variability in training-induced skeletal muscle adaptation. J Appl Physiol 110:846–853

    PubMed Central  PubMed  Google Scholar 

  • Trappe SW, Costill DL, Vukovich MD, Jones J, Melham T (1996) Aging among elite distance runners: a 22 year longitudinal study. J Appl Physiol 80:285–290

    CAS  PubMed  Google Scholar 

  • Trappe S, Hayes E, Galpin A, Kaminsky L, Jemiolo B, Fink W et al (2013) New records in aerobic power among octogenarian lifelong endurance athletes. J Appl Physiol 114:3–10

    PubMed Central  PubMed  Google Scholar 

  • Valls MRB, Wilkinson DJ, Narici M, Smith K, Phillips BE et al (2014) Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and sarcopenia. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glu007

    Google Scholar 

  • Vasilaki A, Jackson MJ, McArdle A (2002) Attenuated HSP70 response in skeletal muscle of aged rats following contractile activity. Muscle Nerve 25:902–905

    CAS  PubMed  Google Scholar 

  • Vasilaki A, Iwanejko I, McArdle F, Broome CS, Jackson MJ, McArdle A (2003) Skeletal muscle of aged male mice fail to adapt following contractile activity. Biochem Soc Trans 31:455–456

    CAS  PubMed  Google Scholar 

  • Vasilaki A, McArdle F, Iwanejko LM, McArdle A (2006a) Adaptive response of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev 127:830–839

    CAS  PubMed  Google Scholar 

  • Vasilaki A, Mansouri A, Van Remmen H, Van Der Meulen JH, Larkin L, Richardson AG et al (2006b) Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell 5:109–117

    CAS  PubMed  Google Scholar 

  • Wenz T (2013) Regulation of mitochondrial biogenesis and PGC-1α under cellular stress. Mitochondrion 13:134–142

    CAS  PubMed  Google Scholar 

  • Wenz T, Rosse SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease. Proc Natl Acad Sci USA 106:20405–20410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    CAS  PubMed  Google Scholar 

  • Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

    CAS  PubMed  Google Scholar 

  • Winterbourn CC (2014a) Are free radicals involved in thiol-based redox signalling? Free Radic Biol Med. doi:10.1016/j.freeradbiolmed.2014.08.017i

    Google Scholar 

  • Winterbourn CC (2014b) The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim Biophys Acta 1840:730–738

    CAS  PubMed  Google Scholar 

  • Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO (2007) Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression. J Biol Chem 282:194–199

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Age UK are thanked for generous financial support. JNC and PRM would like to acknowledge financial support provided by the Carnegie Trust and Abertay University.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme L. Close.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobley, J.N., Moult, P.R., Burniston, J.G. et al. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!. Biogerontology 16, 249–264 (2015). https://doi.org/10.1007/s10522-014-9546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-014-9546-8

Keywords

Navigation