Skip to main content
Log in

Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

Biogerontology Aims and scope Submit manuscript

Abstract

Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor HU. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277:50934–50940

    Article  CAS  PubMed  Google Scholar 

  • Brosh RM Jr, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A, Bohr VA (1999) Functional and physical interaction between WRN helicase and human replication protein A. J Biol Chem 274:18341–18350

    Article  CAS  PubMed  Google Scholar 

  • Brosh RM Jr, Majumdar A, Desai S, Hickson ID, Bohr VA, Seidman MM (2001a) Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases. J Biol Chem 276:3024–3030

    Article  CAS  PubMed  Google Scholar 

  • Brosh RM Jr, von Kobbe C, Sommers JA, Karmakar P, Opresko PL, Piotrowski J, Dianova I, Dianov GL, Bohr VA (2001b) Werner syndrome protein interacts with human flap endonuclease 1 and stimulates its cleavage activity. EMBO J 20:5791–5801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brosh RM Jr, Waheed J, Sommers JA (2002) Biochemical characterization of the DNA substrate specificity of Werner syndrome helicase. J Biol Chem 277:23236–23245

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2003) Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes. Exp Gerontol 38:5–11

    Article  CAS  PubMed  Google Scholar 

  • Chandler H, Peters G (2013) Stressing the cell cycle in senescence and aging. Curr Opin Cell Biol 25:765–771

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Oshima J (2002) Werner syndrome. J Biomed Biotechnol 2:46–54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng WH, von Kobbe C, Opresko PL, Fields KM, Ren J, Kufe D, Bohr VA (2003) Werner syndrome protein phosphorylation by abl tyrosine kinase regulates its activity and distribution. Mol Cell Biol 23:6385–6395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1:80–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez Karlseder J (2007) Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci USA 104:2205–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dolan ME, Pegg AE (1997) O6-benzylguanine and its role in chemotherapy. Clin Cancer Res 3:837–847

    CAS  PubMed  Google Scholar 

  • Dolan ME, Moschel RC, Pegg AE (1990) Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc Natl Acad Sci USA 87:5368–5372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du X, Shen J, Kugan N, Furth EE, Lombard DB, Cheung C, Pak S, Luo G, Pignolo RJ, DePinho RA, Guarente L, Johnson FB (2004) Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol 24:8437–8446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franchitto A, Pirzio LM, Prosperi E, Sapora O, Bignami M, Pichierri P (2008) Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway. J Cell Biol 183:241–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuchi K, Martin GM, Monnat RJ Jr (1989) Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci USA 86:5893–5897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gebhart E, Bauer R, Raub U, Schinzel M, Ruprecht KW, Jonas JB (1988) Spontaneous and induced chromosomal instability in Werner syndrome. Hum Genet 80:135–139

    Article  CAS  PubMed  Google Scholar 

  • Goto M (1997) Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal ageing. Mech Ageing Dev 98:239–254

    Article  CAS  PubMed  Google Scholar 

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17:100–103

    Article  CAS  PubMed  Google Scholar 

  • Hawker JR Jr (2003) Chemiluminescence-based BrdU ELISA to measure DNA synthesis. J Immunol Methods 274:77–82

    Article  CAS  PubMed  Google Scholar 

  • Honma M, Tadokoro S, Sakamoto H, Tanabe H, Sugimoto M, Furuichi Y, Satoh T, Sofuni T, Goto M, Hayashi M (2002) Chromosomal instability in B-lymphoblasotoid cell lines from Werner and Bloom syndrome patients. Mutat Res 520:15–24

    Article  CAS  PubMed  Google Scholar 

  • Horton JK, Stefanick DF, Naron JM, Kedar PS, Wilson SH (2005) Poly(ADP-ribose) polymerase activity prevents signaling pathways for cell cycle arrest after DNA methylating agent exposure. J Biol Chem 280:15773–15785

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998) The premature ageing syndrome protein, WRN, is a 3′→ 5′ exonuclease. Nat Genet 20:114–116

  • Johnson RE, Yu SL, Prakash S, Prakash L (2007) A role for yeast and human translesion synthesis DNA polymerases in promoting replication through 3-methyladenine. Mol Cell Biol 27:7198–7205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407

    Article  CAS  PubMed  Google Scholar 

  • Kahyo T, Mostoslavsky R, Goto M, Setou M (2008) Sirtuin-mediated deacetylation pathway stabilizes Werner syndrome protein. FEBS Lett 582:2479–2483

    Article  CAS  PubMed  Google Scholar 

  • Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 6:1079–1099

    Article  CAS  PubMed  Google Scholar 

  • Kamath-Loeb AS, Johansson E, Burgers PM, Loeb LA (2000) Functional interaction between the Werner syndrome protein and DNA polymerase delta. Proc Natl Acad Sci USA 97:4603–4608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karmakar P, Bohr VA (2005) Cellular dynamics and modulation of WRN protein is DNA damage specific. Mech Ageing Dev 126:1146–1158

    Article  CAS  PubMed  Google Scholar 

  • Karmakar P, Piotrowski J, Brosh RM Jr, Sommers JA, Miller SP, Cheng WH, Snowden CM, Ramsden DA, Bohr VA (2002) Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 277:18291–18302

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto R, Muftuoglu M, Bohr VA (2007) The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev 128:50–57

    Article  CAS  PubMed  Google Scholar 

  • Laine JP, Opresko PL, Indig FE, Harrigan JA, von Kobbe C, Bohr VA (2003) Werner protein stimulates topoisomerase I DNA relaxation activity. Cancer Res 63:7136–7146

    CAS  PubMed  Google Scholar 

  • Lebel M, Spillare EA, Harris CC, Leder P (1999) The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem 274:37795–37799

    Article  CAS  PubMed  Google Scholar 

  • Li K, Casta A, Wang R, Lozada E, Fan W, Kane S, Ge Q, Gu W, Orren D, Luo J (2008) Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem 283:7590–7598

    Article  CAS  PubMed  Google Scholar 

  • Li K, Wang R, Lozada E, Fan W, Orren DK, Luo J (2010) Acetylation of WRN protein regulates its stability by inhibiting ubiquitination. PLoS One 5:e10341

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu JS, Kuo SR, Melendy T (2003) Comparison of checkpoint responses triggered by DNA polymerase inhibition versus DNA damaging agents. Mutat Res 532:215–226

    Article  CAS  PubMed  Google Scholar 

  • Lord CJ, Ashworth A (2008) Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 8:363–369

    Article  CAS  PubMed  Google Scholar 

  • Löser DA, Shibata A, Shibata AK, Woodbine LJ, Jeggo PA, Chalmers AJ (2010) Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair. Mol Cancer Ther 9:1775–1787

    Article  PubMed Central  PubMed  Google Scholar 

  • Machwe A, Xiao L, Theodore S, Orren DK (2002) DNase I footprinting and enhanced exonuclease function of the bipartite Werner syndrome protein (WRN) bound to partially melted duplex DNA. J Biol Chem 277:4492–4504

    Article  CAS  PubMed  Google Scholar 

  • Machwe A, Xiao L, Groden J, Matson SW, Orren DK (2005) RecQ family members combine strand pairing and unwinding activities to catalyze strand exchange. J Biol Chem 280:23397–23407

    Article  CAS  PubMed  Google Scholar 

  • Machwe A, Xiao L, Groden J, Orren DK (2006) The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45:13939–13946

    Article  CAS  PubMed  Google Scholar 

  • Machwe A, Xiao L, Lloyd RG, Bolt E, Orren DK (2007) Replication fork regression is catalyzed by the combined helicase, strand pairing, and exonuclease activities of the Werner syndrome protein (WRN). Nucleic Acids Res 35:5729–5747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Machwe A, Lozada EM, Li GM, Wold MS, Orren DK (2011) Molecular cooperation between the Werner syndrome protein (WRN) and replication protein A (RPA) in relation to replication fork blockage. J Biol Chem 286:3497–3508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin GM, Oshima J (2000) Lessons from human progeroid syndromes. Nature 408:263–266

    Article  CAS  PubMed  Google Scholar 

  • Mian IS (1997) Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res 25:3187–3195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohaghegh P, Karow JK, Brosh RM Jr, Jr Bohr VA, Hickson ID (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29:2843–2849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moradei O, Maroun CR, Paquin I, Vaisburg A (2005) Histone deacetylase inhibitors: latest developments, trends and prospects. Curr Med Chem Anticancer Agents 5:529–560

    Article  CAS  PubMed  Google Scholar 

  • Muftuoglu M, Kusumoto R, Speina E, Beck G, Cheng WH, Bohr VA (2008) Acetylation regulates WRN catalytic activities and affects base excision DNA repair. PLoS One 3:e1918

    Article  PubMed Central  PubMed  Google Scholar 

  • Murakami J, Lee YJ, Kokeguchi S, Tsujigiwa H, Asaumi J, Nagatsuka H, Fukui K, Kuroda M, Tanaka N, Matsubara N (2007) Depletion of O6-methylguanine-DNA methyltransferase by O6-benzylguanine enhances 5-FU cytotoxicity in colon and oral cancer cell lines. Oncol Rep 17:1461–1467

    CAS  PubMed  Google Scholar 

  • Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA, Rabinovitch PS, Martin GM (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101:121–125

    Article  CAS  PubMed  Google Scholar 

  • Orren DK (2006) Werner syndrome: molecular insights into the relationships between defective DNA metabolism, genomic instability, cancer and aging. Front Biosci 11:2657–2671

    Article  CAS  PubMed  Google Scholar 

  • Orren DK, Brosh RM Jr, Nehlin JO, Machwe A, Gray MD, Bohr VA (1999) Enzymatic and DNA binding properties of purified WRN protein: high affinity binding to single-stranded DNA but not to DNA damage induced by 4NQO. Nucleic Acids Res 27:3557–3566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orren DK, Theodore S, Machwe A (2002) The Werner syndrome helicase/exonuclease (WRN) disrupts and degrades D-loops in vitro. Biochemistry 41:13483–13488

    Article  CAS  PubMed  Google Scholar 

  • Otterlei M, Bruheim P, Ahn B, Bussen W, Karmakar P, Baynton K, Bohr VA (2006) Werner syndrome protein participates in a complex with RAD51, RAD54, RAD54B and ATR in response to ICL-induced replication arrest. J Cell Sci 119:5137–5146

    Article  CAS  PubMed  Google Scholar 

  • Pichierri P, Franchitto A, Mosesso P, Palitti F (2001) Werner’s syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol Biol Cell 12:2412–2421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pichierri P, Rosselli F, Franchitto A (2003) Werner’s syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 22:1491–1500

    Article  CAS  PubMed  Google Scholar 

  • Plummer ER (2006) Inhibition of poly(ADP-ribose) polymerase in cancer. Curr Opin Pharmacol 6:364–368

    Article  CAS  PubMed  Google Scholar 

  • Poot M, Hoehn H, Rünger TM, Martin GM (1992) Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp Cell Res 202:267–273

    Article  CAS  PubMed  Google Scholar 

  • Poot M, Gollahon KA, Rabinovitch PS (1999) Werner syndrome lymphoblastoid cells are sensitive to camptothecin-induced apoptosis in S-phase. Hum Genet 104:10–14

    Article  CAS  PubMed  Google Scholar 

  • Poot M, Yom JS, Whang SH, Kato JT, Gollahon KA, Rabinovitch PS (2001) Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15:1224–1226

    CAS  PubMed  Google Scholar 

  • Reed E (1998) Platinum-DNA adduct, nucleotide excision repair and platinum-based anti-cancer chemotherapy. Cancer Treat Rev 24:331–344

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Lopez AM, Jackson DA, Iborra F, Cox LS (2002) Asymmetry of DNA replication fork progression in Werner’s syndrome. Aging Cell 1:30–39

    Article  PubMed  Google Scholar 

  • Rodríguez-López AM, Jackson DA, Nehlin JO, Iborra F, Warren AV, Cox LS (2003) Characterisation of the interaction between WRN, the helicase/exonuclease defective in progeroid Werner’s syndrome, and an essential replication factor, PCNA. Mech Ageing Dev 124:167–174

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  • Sancar A (1995) Excision repair in mammalian cells. J Biol Chem 270:15915–15918

    Article  CAS  PubMed  Google Scholar 

  • Shen JC, Gray MD, Oshima J, Loeb LA (1998a) Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res 26:2879–2885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen JC, Gray MD, Oshima J, Kamath-Loeb AS, Fry M, Loeb LA (1998b) Werner syndrome protein. I. DNA helicase and DNA exonuclease reside on the same polypeptide. J Biol Chem 273:34139–34144

    Article  CAS  PubMed  Google Scholar 

  • Shen JC, Lao Y, Kamath-Loeb A, Wold MS, Loeb LA (2003) The N-terminal domain of the large subunit of human replication protein A binds to Werner syndrome protein and stimulates helicase activity. Mech Ageing Dev 124:921–930

    Article  CAS  PubMed  Google Scholar 

  • Sidorova JM (2008) Roles of the Werner syndrome RecQ helicase in DNA replication. DNA Repair 7:1776–1786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sousa FG, Matuo R, Soares DG, Escargueil AE, Henriques JAP, Larsen AK, Saffi J (2012) PARPs and the DNA damage response. Carcinogenesis 33:1433–1440

    Article  CAS  PubMed  Google Scholar 

  • States JC, Quan T, Hines RN, Novak RF, Runge-Morris M (1993) Expression of human cytochrome P450 1A1 in DNA repair deficient and proficient human fibroblasts stably transformed with an inducible expression vector. Carcinogenesis 14:1643–1649

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Shimamoto A, Imamura O, Kuromitsu J, Kitao S, Goto M, Furuichi Y (1997) DNA helicase activity in Werner’s syndrome gene product synthesized in a baculovirus system. Nucleic Acids Res 25:2973–2978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szekely AM, Chen YH, Zhang C, Oshima J, Weissman SM (2000) Werner protein recruits DNA polymerase delta to the nucleolus. Proc Natl Acad Sci USA 97:11365–11370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi F, Hanaoka F, Goto M, Yamada M, Miyamoto T (1982) Prolongation of S phase and whole cell cycle in Werner’s syndrome fibroblasts. Exp Gerontol 17:473–480

    Article  CAS  PubMed  Google Scholar 

  • Trimmer EE, Essigmann JM (1999) Cisplatin. Essays Biochem 34:191–211

    CAS  PubMed  Google Scholar 

  • Vaitiekunaite R, Butkiewicz D, Krzesniak M, Przybylek M, Gryc A, Snietura M, Benedyk M, Harris CC, Rusin M (2007) Expression and localization of Werner syndrome protein is modulated by SIRT1 and PML. Mech Ageing Dev 128:650–661

    Article  CAS  PubMed  Google Scholar 

  • von Kobbe C, Thomä NH, Czyzewski BK, Pavletich NP, Bohr VA (2003) WRN syndrome protein contains three structure-specific DNA binding domains. J Biol Chem 278:52997–53006

    Article  Google Scholar 

  • Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ, Smith G, Powell JE, Rudzki Z, Kearns P, Moss PA, Taylor AM, Stankovic T (2010) The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116:4578–4587

    Article  CAS  PubMed  Google Scholar 

  • Woodhouse BC, Dianov GL (2008) PolyADP-ribose polymerase I: an international molecule of mystery. DNA Repair 7:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Woods YL, Xirodimas DP, Prescott AR, Sparks A, Lane DP, Saville MK (2004) p14 Arf promotes small ubiquitin-like modifier conjugation of Werner’s helicase. J Biol Chem 279:50157–50166

    Article  CAS  PubMed  Google Scholar 

  • Wyatt MD, Pittman DL (2006) Methylating agents and DNA repair responses: methylated bases and sources of strand breaks. Chem Res Toxicol 19:1580–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yannone SM, Roy S, Chan DW, Murphy MB, Huang S, Campisi J, Chen DJ (2001) Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J Biol Chem 276:38242–38248

    CAS  PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants R01AG027258 and R01AG026534 to D.K.O. and J.L., respectively, from the National Institute on Aging of the National Institutes of Health. The authors would also like to thank Dr. Amrita Machwe for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Orren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozada, E., Yi, J., Luo, J. et al. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities. Biogerontology 15, 347–366 (2014). https://doi.org/10.1007/s10522-014-9506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-014-9506-3

Keywords

Navigation