Skip to main content

Advertisement

Log in

A metabolic and functional overview of brain aging linked to neurological disorders

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Close correlations have recently been shown among the late onset complications encountered in diabetes and aging linked to neurobiological disorders. Aging in females and males is considered as the end of natural protection against age related diseases like osteoporosis, coronary heart disease, diabetes, Alzheimer’s disease and Parkinson’s disease, dementia, cognitive dysfunction and hypernatremia. Beside the sex hormones other hormonal changes are also known to occur during aging and many common problems encountered in the aging process can be related to neuroendocrine phenomena. Diabetes mellitus is associated with moderate cognitive deficits and neurophysiologic and structural changes in the brain, a condition that may be referred to as diabetes encephalopathy; diabetes increases the risk of dementia especially in the elderly. The current view is that the diabetic brain features many symptoms that are best described as accelerated brain aging. This review presents and compares biochemical, physiological, electrophysiological, molecular, and pathological data from neuronal tissue of aging and hormone treated control and diabetic animals to arrive at the similarities among the two naturally occuring physiological conditions. Animal models can make a substantial contribution to understanding of the pathogenesis, which share many features with mechanism underlying brain aging. By studying the pathogenesis, targets for pharmacology can be identified, finally leading to delay or prevention of these complications. Antiaging strategies using hormone therapy, chemical and herbal compounds were carried out for reversal of aging effects. Neuronal markers have been presented in this review and similarities in changes were seen among the aging, diabetes and hormone treated (estrogen, DHEA and insulin) brains from these animals. A close correlation was observed in parameters like oxidative stress, enzyme changes, and pathological changes like lipofuscin accumulation in aging and diabetic brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aamodt SM, Constantine-Paton M (1999) The role of neural activity in synaptic development and its implications for adult brain function. Adv Neural 79:133–144

    CAS  Google Scholar 

  • Abdulla FA, Abu-Bakra MA, Calaminici MR, Stephenson JD, Sinden JD (1995) Importance of forebrain cholinergic and GABA-sergic system to the age-related deficits in water maze performance of rats. Neurobiol Aging 16:42–52. doi:10.1016/0197-4580(95)80006-D

    Google Scholar 

  • Ahmed I, Goldstein BJ (2006) Cardiovascular risk in the spectrum of type 2 diabetes mellitus. Mt Sinai J Med 73:759–768

    PubMed  Google Scholar 

  • Ali F, Murthy ASN, Baquer NZ (1980a) Hormonal regualtion of glutamate dehydrogenase in rat. Indian J Exp Biol 18:850–853

    PubMed  CAS  Google Scholar 

  • Ali F, Murthy ASN, Baquer NZ (1980b) Lactate dehydrogenase isoenzymes in diabetic rat. Indian J Biochem Biophys 17:42–44

    PubMed  CAS  Google Scholar 

  • Almaguer W, Estupinan B, Frey JU, Bergado JA (2002) Aging impairs amygdale-hippocampus interaction involved in hippocampal LTP. Neurobiol Aging 23:319–324. doi:10.1016/S0197-4580(01)00278-0

    PubMed  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922. doi:10.1073/pnas.90.17.7915

    PubMed  CAS  Google Scholar 

  • Ansari MA, Gupta BL, Baquer NZ (1993) Changes in insulin receptors, hexokinase and NADPH producing enzymes in choroids plexus during experimental diabetes. J Biosci 18:337–343. doi:10.1007/BF02702991

    CAS  Google Scholar 

  • Apartis E, Poidessous-Jazat F, Epelbaum J, Bassant MH (2000) Age-related changes in rhythmically bursting activity in medical septum of rats. Brain Res 876:37–47. doi:10.1016/S0006-8993(00)02571-3

    PubMed  CAS  Google Scholar 

  • Aronica SM, Kraus WL, Katzenellenbogen BS (1994) Estrogen action via the cAMP-signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci USA 91:8517–8521. doi:10.1073/pnas.91.18.8517

    PubMed  CAS  Google Scholar 

  • Askar M, Baquer NZ (1994) Changes in the activity of NADH oxidase in rat tissues in experimental diabetes. Biochem Mol Biol Int 34(5):909–914

    PubMed  CAS  Google Scholar 

  • Azam M, Gupta BL, Gupta G, Jain S, Baquer NZ (1990a) Rat brain insulin degrading enzyme in insulin and thyroid hormone imbalances. Biochem Int 21:321–329

    PubMed  CAS  Google Scholar 

  • Azam M, Gupta G, Baquer NZ (1990b) Modulation of insulin receptors and catecholamines in rat brain in hyperglycemia and hyperinsulinemia. Biochem Int 22(1):1–9. doi:10.1016/0020-711X(90)90068-E

    PubMed  CAS  Google Scholar 

  • Bala K, Tripathy BC, Sharma D (2006) Neuroprotective and anti-ageing effectof curcumin in aged rat brain regions. Biogerontology 7:81–89. doi:10.1007/s10522-006-6495-x

    PubMed  CAS  Google Scholar 

  • Balazs (1971) In cellular aspects of neuronal growth and differentiation (D.C. pears edition) University of California press, Los Angles

  • Baquer NZ, McLean P, Greenbaum AL (1973) Enzymic differentiation in pathways of carbohydrate metabolism in developing brain. Biochem Biophys Res Commun 53(4):1282–1288

    PubMed  CAS  Google Scholar 

  • Baquer NZ, McLean P, Greenbaum AL (1975) System relationships and the control of metabolic pathways in developing brain. In: Homes FA, Vanden Berg CJ (eds) Normal and Pathological Development of Energy Metabolism. Academic Press, London, pp 109–132 (Held in Eornewerede, Holland)

    Google Scholar 

  • Baquer NZ, Hothersall JS, McLean P, Greenbaum AL (1977) Aspects of carbohydrate metabolism of developing brain. Dev Med Child Neurol 19:81–104

    PubMed  CAS  Google Scholar 

  • Baquer NZ, Duddridge RJ, Hothersall JS (1983) The effect of ageing on ATP and energy linked enzymes in rat brain. J Neurochem 4(Suppl):S22A

    Google Scholar 

  • Baquer NZ, Hothersall JS, McLean P (1988) Function and regulation of the pentose phosphate pathway in brain. Curr Top Cell Regul 29:265–289

    PubMed  CAS  Google Scholar 

  • Baquer NZ, Hothersall JS, McLean P, Greenbaum AL (1990) Effect of ageing on soluble and membrane bound enzymes in rat brain. Neurochem Int 16:369–375. doi:10.1016/0197-0186(90)90113-8

    CAS  PubMed  Google Scholar 

  • Barnes CA RAOG, Mc Naughton BL (1987) Increased electrotonic coupling in aged rat hippocampus: a possible mechanism for cellular excitability change. J Comp Neurol 259:249–558. doi:10.1002/cne.902590405

    Google Scholar 

  • Barnes CA, Mc Naughton BL (1980) Physiological compensation for loss of efferent synapse in rat hippocampal granule cells during senescence. J Physiol 309:437–485

    Google Scholar 

  • Baum L, Cheung SK, Mok VC, Lam LC, Leung VP, Hui E, Ng CC, Chow M, Ho PC, Lam S, Woo J, Chiu HF, Goggins W, Zee B, Wong A, Mok H, Cheng WK, Fong C, Lee JS, Chan MH, Szeto SS, Lui VW, Tsoh J, Kwok TC, Chan IH, Lam CW (2007) Curcumin effects on blood lipid profile in a 6-month human study. Pharmacol Res 56:509–514. doi:10.1016/j.phrs.2007.09.013

    PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Bennett RG, Hamel FG, Duckworth WC, Bennett RG, Hamel FG, Duckworth WC (2000) Insulin inhibits the ubiquitin-dependent degrading activity of the 26S proteasome. Endocrinology 141:2508–2517. doi:10.1210/en.141.7.2508

    PubMed  CAS  Google Scholar 

  • Biessels GJ, Gispen WH (2002) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549

    Google Scholar 

  • Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996a) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45(9):1259–1266. doi:10.2337/diabetes.45.9.1259

    PubMed  CAS  Google Scholar 

  • Biessels GJ, Stevens EJ, Mahmood SJ, Gispen WH, Tomlinson DR (1996b) Insulin partially reverses deficits in peripheral nerve blood flow and conduction in experimental diabetes. J Neurol Sci 140(12):12–20. doi:10.1016/0022-510X(96)00080-9 Erratum in: J Neurol Sci 144. 1-2:234

    PubMed  CAS  Google Scholar 

  • Biessels GJ, Ter Laak MP, Hamers FP, Gispen WH (2002a) Neuronal Ca2+ disregulation in diabetes mellitus. Eur J Pharmacol 447(2–3):201–209. doi:10.1016/S0014-2999(02)01844-7

    PubMed  CAS  Google Scholar 

  • Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH (2002b) Ageing and diabetes: implications for brain function. Eur J Pharmacol 441(1–2):1–14. doi:10.1016/S0014-2999(02)01486-3

    PubMed  CAS  Google Scholar 

  • Birge SJ (2003) The use of estrogen in older women. Clin Geriatr Med 19(3):617–627. doi:10.1016/S0749-0690(02)00143-X

    PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403. doi:10.1016/S0140-6736(06)69113-7

    PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39. doi:10.1038/361031a0

    PubMed  CAS  Google Scholar 

  • Bondereff W (1964) Histophysiology of the aging nervous system. Adv Gerontol Res 18:1–22

    Google Scholar 

  • Boutros NN, Reid MC, Petrakis T, Campbell D, Torello M, Krystal J (2000) Similarities in the disturbances in cortical information processing in alcoholism and aging: a pilot evoked potential study. Int Psychogeriatr 12(4):513–525. doi:10.1017/S1041610200006621

    PubMed  CAS  Google Scholar 

  • Brownlee M (2000) Negative consequences of glycation. Metabolism 49:9–13. doi:10.1016/S0026-0495(00)80078-5

    PubMed  CAS  Google Scholar 

  • Buckley BM, Williamson DH (1973) Acetoacetate and brain lipogenesis: developmental pattern of acetoacetyl-coenzyme A synthetase in the soluble fraction of rat brain. Biochem J 132(3):653–656

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Castegna A (2003) Proteomic analysis of oxidatively modified proteins in Alzheimer’s disease brain: insights into neurodegeneration. Cell Mol Biol Noisy-le-grand 49(5):747–751

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Gnjec A, Poon HF, Castegna A, Pierce WM, Klein JB, Martins RN (2006) Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment. J Alzheimers Dis 10(4):391–397

    PubMed  CAS  Google Scholar 

  • Calabrese V, Ravagna A, Colonbrita C, Scapagnini G, Guagliano E, Butterfield DA (2006) Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 17(2):73–88. doi:10.1016/j.jnutbio.2005.03.027

    PubMed  CAS  Google Scholar 

  • Caprioli A, Markowska AL, Olton DS (1995) Acetyl-l-carnitine: chronic treatment improves spatial acquisition in a new environment in aged rats. J Gerontol Series A 50:B232–B235

    CAS  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490. doi:10.1016/S0076-6879(85)13062-4

    PubMed  CAS  Google Scholar 

  • Carlsson A, Adolfsson R, Aquilonius SM, Gottfries CG, Orland L, Svennerholm L, Winblad B (1980) Biogenic amines in human brain in normal aging, senile dementia, and chronic alcoholism: ergot compounds, brain function. In: Goldstein M, Lieberman A, Calne DB, Thorner MO (eds) Advances in biochemical psycho-pharmticology, vol 23. Raven Press, New York, pp 295–304

    Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33(4):562–571. doi:10.1016/S0891-5849(02)00914-0

    PubMed  CAS  Google Scholar 

  • Cerami A, Vlassara H, Brownlee M (1987) Glucose and aging. Science 33:626–634

    Google Scholar 

  • Chang YM, Rosene DL, Killiiany RJ, Mangiamele LA, Luebke JI (2005) Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. Cereb Cortex 15:409–418. doi:10.1093/cercor/bhh144

    PubMed  Google Scholar 

  • Cingolani LA, Gymnopoulos M, Boccaccio A, Stocker M, Pedarzani P (2002) Developmental regulation of small-conductance Ca2+ activated channel expression and function in rat purkinje neurons. J Neurosci 22:4456–4467

    PubMed  CAS  Google Scholar 

  • Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55(12):3320–3325. doi:10.2337/db06-0485

    PubMed  CAS  Google Scholar 

  • Coggen JS, Grutzendler J, Bishop DL, Cook MR, Gen W, Heyn J, Lichtman JW (2004) Age-associated synapse elimination in mouse parasympathetic ganglia. J Neurobiol 60:214–226. doi:10.1002/neu.20022

    Google Scholar 

  • Craft S, Asthana S, Schellenberg G, Baker L, Cherrier M, Boyt AA, Martins RN, Raskind M, Peskind E, Plymate S (2000) Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer’s disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci 903:222–228. doi:10.1111/j.1749-6632.2000.tb06371.x

    PubMed  CAS  Google Scholar 

  • Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115:732–744. doi:10.1016/j.clinph.2003.11.021

    PubMed  Google Scholar 

  • D’Almeida V, Hipolide PC, Desilva-Fernands ME (1995) Lack of sex and estrous cycle effects on the activity of three antioxidant enzymes in rats. Physiol Behav 57:385–387. doi:10.1016/0031-9384(94)00234-V

    PubMed  Google Scholar 

  • Dash NK, Azam M, Gupta G, Baquer NZ (1991) Effect of hyperglycemia on acetylcholine esterase and catecholamine levels in rat brain and heart. Biochem Int 23(2):261–269

    PubMed  CAS  Google Scholar 

  • Davis S, Markowska AL, Wenk GL, Barnes CA (1993) Acetyl-l-carnitine: behavioral, electrophysiological and neurochemical effects. Neurobiol Aging 14:107–115. doi:10.1016/0197-4580(93)90030-F

    PubMed  CAS  Google Scholar 

  • Davison PF, Wright BE (1980) Mechanisms of development and aging. Mech Ageing Dev 12(3):213–219. doi:10.1016/0047-6374(80)90043-3

    PubMed  Google Scholar 

  • De Grey ADNJ (2003) The foreseeability of real anti-aging medicine: focusing the debate. Exp Gerontol 38:927–934. doi:10.1016/S0531-5565(03)00155-4

    PubMed  Google Scholar 

  • Dena BD, Phyllis MW (2001) Neuroprotective effects of estradiol in middle-aged female rats. Endocrinology 142:43–48. doi:10.1210/en.142.1.43

    Google Scholar 

  • Disterhoft JF, Mathew OM (2006) Pharmacological and molecular enhancement of learning in aging and Alzheimer’s disease. J Physiol (Paris) 99:180–192. doi:10.1016/j.jphysparis.2005.12.079

    CAS  Google Scholar 

  • Dowson JH, Wilton-Cox H, Cairns MR, Ramacci MT (1992) The morphology of lipopigment in rat Purkinje neurons after chronic acetyl-l-carnitine administration: a reduction in aging-related changes. Biol Psychiatry 32:179–187. doi:10.1016/0006-3223(92)90021-Q

    PubMed  CAS  Google Scholar 

  • Drach LM, Bohl J, Goebel HH (1994) The lipofuscin content of nerve cells of the inferior olivary nucleus in Alzheimer’s disease. Dementia 5:234–239

    PubMed  CAS  Google Scholar 

  • Draznin B, Steinberg JP, Leitner JW, Sussman KE (1985) The nature of insulin secretory defect in aging rats. Diabetes 34(11):1168–1173. doi:10.2337/diabetes.34.11.1168

    PubMed  CAS  Google Scholar 

  • Duffy FH, Albert MS, Mc Anulty G, Garvey AJ (1984) Age-related differences in brain electrical activity of healthy subjects. Ann Neurol 16:430–438. doi:10.1002/ana.410160403

    PubMed  CAS  Google Scholar 

  • Dunn JE, Weintraub S, Stoddard AM, Banks S (2007) Serum alpha-tocopherol, concurrent and past vitamin E intake, and mild cognitive impairment. Neurology 68(9):670–676. doi:10.1212/01.wnl.0000255940.13116.86

    PubMed  CAS  Google Scholar 

  • El-Hassan A, Zubairu S, Hothersall JS, Greenbaum AL (1981) Age-related changes in enzymes of rat brain. 1. Enzymes of glycolysis, the pentose phosphate pathway and lipogenesis. Enzyme 26(2):107–112

    PubMed  CAS  Google Scholar 

  • Epstein MH, Barrows CH (1969) The effect of age on the activity of glutamate decarboxylase in various regions of the brains of rats. J Gerontol 24(2):136–139

    PubMed  CAS  Google Scholar 

  • Exton JH (1975) Analysis of hormone effect on carbohydrate metabolism by use of metabolic crossover plots. In: o’ malley, BW, hardman JG (Eds) Methods in enzymology. Peptide hormones, vol 37, part B. New York; Academic press, p 277

  • Facchini FS, Hua NW, Reaven GM, Stoohs RA (2000) Hyperinsulinemia: the missing link among oxidative stress and age-related diseases? Free Radic Biol Med 29:1302–1306. doi:10.1016/S0891-5849(00)00438-X

    PubMed  CAS  Google Scholar 

  • Fain GL (1999) Molecular and cellular physiology of Neurons, Harvard university Press (Prontice Hall of India Pvt Ltd) New Delhi 2005

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi:10.1038/35041687

    PubMed  CAS  Google Scholar 

  • Forloni G (1993) Beta-amyloid neurotoxicity. Funct Neurol 8:211–225

    PubMed  CAS  Google Scholar 

  • Foster TC, Kumar A (2002) Calcium dysregulation in the aging brain. Neuroscientist 8(4):297–301

    PubMed  CAS  Google Scholar 

  • Fraser CL, Arieff AI (2001) Na-K-ATPase activity decreases with aging in female rat brain synaptosomes. Am J Physiol Renal Physiol 281(4):F674–F678

    PubMed  CAS  Google Scholar 

  • Frolich LD, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438. doi:10.1007/s007020050068

    PubMed  CAS  Google Scholar 

  • Frolkis VV, Train SA, Martynenko DA, Bogatskaya LN, Bezrukov VV (1984) Aging of the neurons. In: Frolkis VV, Johnson JE (eds) Physiology of cell aging. Raven Press, New York, pp 149–185

    Google Scholar 

  • Fulop T, Larbi A, Douziech N (2003) Insulin receptor and ageing. Pathol Biol (Paris) 51(10):574–580. doi:10.1016/j.patbio.2003.09.007

    CAS  Google Scholar 

  • Gavin JR, Alberti KGMM, Davidson MB, DeFronzo RA, Drash A, Gabbe SG, Genuth S, Harris MI, Kahn R, Keen H, Knowler WC, Lebovitz H, Maclaren NK, Palmer JP, Raskin P, Rizza RA, Stern MP (1997) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20:1183–1197

    Google Scholar 

  • Genet S, Kale RK, Baquer NZ (2000) Effect of free radicals on cytosolic creatine kinase activities and protection by antioxidant enzymes and sulfhydryl compounds. Mol Cell Biochem 210:23–28. doi:10.1023/A:1007071617480

    PubMed  CAS  Google Scholar 

  • Genet S, Kale RK, Baquer NZ (2002) Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonella foenum graecum). Mol Cell Biochem 236:7–12. doi:10.1023/A:1016103131408

    PubMed  CAS  Google Scholar 

  • Gispen WH, Biessels GJ (2000) Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 23:542–549. doi:10.1016/S0166-2236(00)01656-8

    PubMed  CAS  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809. doi:10.1016/j.bcp.2007.08.016

    PubMed  CAS  Google Scholar 

  • Greengard P, Kebabian JW (1974) Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed Proc 33(4):1059–1067

    PubMed  CAS  Google Scholar 

  • Grunblatt E, Koutsilieri E, Hoyer S, Riederer P (2006) Gene expression alterations in brain areas of intracerebroventricular streptozotocin treated rat. J Alzheimers Dis 9:261–271

    PubMed  Google Scholar 

  • Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770. doi:10.1111/j.1471-4159.2006.04368.x

    PubMed  Google Scholar 

  • Gsell W, Conrad R, Hickethier M, Sofic E, Frolich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem 64:1216–1223

    PubMed  CAS  Google Scholar 

  • Gupta G, Azam M, Baquer NZ (1992a) Modulation of rat brain insulin receptor kinase activity in diabetes. Neurochem Int 20:487–492. doi:10.1016/0197-0186(92)90027-O

    PubMed  CAS  Google Scholar 

  • Gupta G, Azam M, Baquer NZ (1992b) Effect of experimental diabetes on the catecholamine metabolism in rat brain. J Neurochem 58:95–100. doi:10.1111/j.1471-4159.1992.tb09282.x

    PubMed  CAS  Google Scholar 

  • Hamel FG, Bennett RG, Duckworth WC (1998) Regulation of multicatalytic enzyme activity by insulin and the insulin-degrading enzyme. Endocrinology 139:4061–4066. doi:10.1210/en.139.10.4061

    PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    PubMed  CAS  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128. doi:10.1073/pnas.78.11.7124

    PubMed  CAS  Google Scholar 

  • Havrankova J, Schmechel D, Roth J, Brownstein M (1978a) Identification of insulin in rat brain. Proc Natl Acad Sci USA 75:5737–5741. doi:10.1073/pnas.75.11.5737

    PubMed  CAS  Google Scholar 

  • Havrankova J, Roth J, Brownstein M (1978b) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829. doi:10.1038/272827a0

    PubMed  CAS  Google Scholar 

  • Hellweg RG, Raivich HD, Hartung HD, Hock C, Kreutzberg GW (1994) Axonal transport of endogenous nerve growth factor (NGF) and NGF receptor in experimental diabetic neuropathy. Exp Neurol 130:24–30. doi:10.1006/exnr.1994.1181

    PubMed  CAS  Google Scholar 

  • Hemond P, Jaffe DB (2005) Caloric restriction prevents aging-associated change in spike-mediated Ca2+ accumulation and the slow afterhyperpolarization in hippocampal CA1 pyramidal neurons. Neuroscience 135:413–420. doi:10.1016/j.neuroscience.2005.05.044

    PubMed  CAS  Google Scholar 

  • Herrmann WM, Dietrich B, Hiersemenzel R (1990) Pharmaco-electroencephalographic and clinical effects of the cholinergic substance—acetyl-l-carnitine—in patients with organic brain syndrome. Int J Clin Pharmacol Res 10(1–2):81–84

    PubMed  CAS  Google Scholar 

  • Himwich W (1974) Biochemistry of the developing brain, vol 2. Decker, New York

    Google Scholar 

  • Hothersall JS, Baquer NZ, Greenbaum AL, Mclean P (1979) Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulphate on the integration of metabolic routes. Arch Biochem Biophys 198:478–492. doi:10.1016/0003-9861(79)90522-8

    PubMed  CAS  Google Scholar 

  • Hothersall JS, El-Hassan A, McLean P, Greenbaum AL (1981) Age-related changes in enzymes of rat brain. 2. Redox systems linked to NADP and glutathione. Enzyme 26:271–276

    PubMed  CAS  Google Scholar 

  • Hothersall JS, Greenbaum AL, Mclean P (1982) The functional significance of the pentose phosphate pathway in synaptosomes: protection against peroxidative damage by catecholamines and oxidants. J Neurochem 39:1325–1332. doi:10.1111/j.1471-4159.1982.tb12574.x

    PubMed  CAS  Google Scholar 

  • Hothersall JS, Duddridge R, Baquer NZ (1983) The effect of aging on the activity of adenylate cyclase in rat brain. J Neurochem 41(Suppl):521

    Google Scholar 

  • Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105:415–422. doi:10.1007/s007020050067

    PubMed  CAS  Google Scholar 

  • Hsu KS, Huang CC, Liang YC, Wu HM, Chen YL, Lo SW, Ho WC (2002) Alterations in the balance of protein kinase and phosphatase activities and age-related impairments of synaptic transmission and longterm potentiation. Hippocampus 12:787–802. doi:10.1002/hipo.10032

    PubMed  CAS  Google Scholar 

  • Huang WC, Juang SW, Liu IM, Chi TC, Cheng JT (1999) Changes of superoxide dismutase gene expression and activity in the brain of streptozotocin-induced diabetic rats. Neurosci Lett 275:25–28. doi:10.1016/S0304-3940(99)00704-1

    PubMed  CAS  Google Scholar 

  • Hudson S, Tabet N (2003) Acetyl-l-carnitine for dementia. Cochrane Database Syst Rev (2). doi:10.1002/14651858.CD003158

  • Ikebuchi M, Kashiwagi A, Asahina T, Tanaka Y, Takagi Y, Nishio Y, Hidaka H, Kikkawa R, Shigeta Y (1993) Effect of medium pH on glutathione redox cycle in cultured human umbilical vein endothelial cells. Metabolism 42:1121–1126. doi:10.1016/0026-0495(93)90269-T

    PubMed  CAS  Google Scholar 

  • Isomura Y, Koto N (1999) Action potential-induced dendritic calcium dynamics correlated with synaptic plasticity in developing hippocampal pyramidal cells. J Neurophysiol 82:1993–1999

    PubMed  CAS  Google Scholar 

  • Jay WP, Kanagasabai P, William EK, Richard J, Larry RM (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol Aging 15:117–132

    Google Scholar 

  • Jellinger KA (2006) Alzheimer 100—highlights in the history of Alzheimer research. J Neural Transm 113:1603–1623. doi:10.1007/s00702-006-0578-3

    PubMed  CAS  Google Scholar 

  • Jennings PE, Jones AF, Florkowski CM, Lunec J, Barnett AH (1987) Increased diene conjugates in diabetic subjects with microangiopathy. Diabet Med 4(5):452–456

    PubMed  CAS  Google Scholar 

  • Johnson G, Stoothoff W (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729. doi:10.1242/jcs.01558

    PubMed  CAS  Google Scholar 

  • Jones RSG, Olpe HR (1984) Multiple changes in the sensitivity of cingulated cortex neurons to putative neurotransmitters in aging rats: substance P, acetylcholine and noradrenaline. Neurosci Lett 50:31–36. doi:10.1016/0304-3940(84)90457-9

    PubMed  CAS  Google Scholar 

  • Jyoti A, Sharma D (2006) Neuroprotective role of Bacopa monniera against aluminium-induced oxidative stress in the hippocampus of rat brain. Neurotoxicology 27:451–457. doi:10.1016/j.neuro.2005.12.007

    PubMed  CAS  Google Scholar 

  • Jyoti A, Sethi P, Sharma D (2007) Bacopa moneiera prevents from aluminium neurotoxicity in the cerebral cortex of rat brain. J Ethanopharmacology 111:57–62

    Google Scholar 

  • Kalaria RN (1996) Cerebral vessels in ageing and Alzheimer’s disease. Pharmacol Ther 72:193–214. doi:10.1016/S0163-7258(96)00116-7

    PubMed  CAS  Google Scholar 

  • Kamal A, Biessels GJ, Urban IJA, Gispen WH (1999) Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression. Neuroscience 90:737–745. doi:10.1016/S0306-4522(98)00485-0

    PubMed  CAS  Google Scholar 

  • Kamal A, Biessels GJ, Duis SEJ, Gispen WH (2000) Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia 43:500–506. doi:10.1007/s001250051335

    PubMed  CAS  Google Scholar 

  • Kang JH, Cook N, Manson J, Buring JE, Grodstein F (2006) A randomized trial of vitamin E supplementation and cognitive function in women. Arch Intern Med 166(22):2462–2468. doi:10.1001/archinte.166.22.2462

    PubMed  CAS  Google Scholar 

  • Kato T, Lowry OH (1973) Distrbution of enzymes between nucleus and cytoplasm of single nerve cell bodies. J Biol Chem 248(6):2044–2048

    PubMed  CAS  Google Scholar 

  • Kauffman FC (1972) The quantitative histochemistry of enzymes of the pentose phosphate pathways in the central nervous system of the rat. J Neurochem 19(1):1–9. doi:10.1111/j.1471-4159.1972.tb01247.x

    PubMed  CAS  Google Scholar 

  • Kauffman FC, Brown JG, Passonneau JV, Lowry OH (1969) Effects of changes in brain metabolism on levels of pentose phosphate pathway intermediate. J Biol Chem 4:3467

    Google Scholar 

  • Kaur G, Lakhman SS (1994) Effect of alloxan-induced diabetes on Na+, K+-ATPase activity from discrete areas of the rat brain. Biochem Mol Biol Int 34(4):781–788

    PubMed  CAS  Google Scholar 

  • Kaur J, Sharma D, Singh R (1998) Regional effects of aging on Na+, K+ ATPase activity in rat brain and correlation with multiple unit action potentials and lipid peroxidation. Indian J Exp biochem Biophy 35:364–371

    CAS  Google Scholar 

  • Kaur J, Sharma D, Singh R (2001) Acetyl-l-carnitine enhances Na+, K+ ATPase glutathione-s-transferase and multiple unit activity and reduces lipid peroxidation and lipofuscin concentration in aged rat brain regions. Neurosci Lett 301:104. doi:10.1016/S0304-3940(01)01576-2

    Google Scholar 

  • Kaur J, Singh S, Sharma D, Singh R (2003) Neurostimulatory and antioxidative effects of l-deprenyl in aged rat brain regions. Biogerontology 4:105–111. doi:10.1023/A:1023351904840

    PubMed  CAS  Google Scholar 

  • Kaye JA, DeCarli C, Luxenberg JS, Rapoport SI (1992) The significance of age-related enlargement of the cerebral ventricles in healthy men and women measured by quantitative computed X-ray tomography. J Am Geriatr Soc 40(3):225–231

    PubMed  CAS  Google Scholar 

  • Kazmi SMI, Baquer NZ (1985) Influence of alloxan diabetes and insulin treatment on the activity of alanine aminotransferase in rat brain regions, liver and heart. Enzyme 34(2):57–63

    PubMed  CAS  Google Scholar 

  • Keller JN, Germeyer A, Begley JG, Mattson MP (1997) 17b-estradiol attenuates oxidative impairment of synaptic Na+/K+-ATPase activity, glucose transport and glutamate transport induced by amyloid beta-peptide and iron. J Neurosci Res 50:522–530. doi:10.1002/(SICI)1097-4547(19971115)50:4<522::AID-JNR3>3.0.CO;2-G

    PubMed  CAS  Google Scholar 

  • Khachaturian ZS (1994) Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci 747:1–11

    PubMed  CAS  Google Scholar 

  • Khan A, Ballard C (2008) Defeating dementia: current approaches to potential amyloid-based Alzheimer’s disease therapies. The biochemist 30(5):14–17

    CAS  Google Scholar 

  • Khandkar MA, Mukherjee E, Parmar DV, Katyare SS (1995) Alloxan-diabetes alters kinetic properties of the membrane-bound form, but not of the soluble form, of acetylcholinesterase in rat brain. Biochem J 307(Pt 3):647–649

    PubMed  CAS  Google Scholar 

  • Kiray M, Uysal N, Sönmez A, Açikgöz O, Gönenç S (2004) Positive effects of deprenyl and estradiol on spatial memory and oxidant stress in aged female rat brains. Neurosci Lett 354(3):225–228. doi:10.1016/j.neulet.2003.10.019

    PubMed  CAS  Google Scholar 

  • Kitani K, Minami C, Yamamoto T, Kanai S, Ivy GO, Carrillo MC (2002) Pharmacological interventions in aging and age-associated disordered: potential of propargylamines for human use. Ann N Y Acad Sci 959:295–307

    PubMed  CAS  Google Scholar 

  • Klee CB, Sokoloff L (1967) Changes in D(−)-beta-hydroxybutyric dehydrogenase activity during brain maturation in the rat. J Biol Chem 242(17):3880–3883

    PubMed  CAS  Google Scholar 

  • Knoll J (1993) The pharmacological basis of the beneficial effects of (−) deprenyl (selegiline) in Parkinson’s and Alzheimer’s disease. J Neural Transm Suppl 40:69–91

    PubMed  CAS  Google Scholar 

  • Knoll J (1998) (−) Deprenyl (selegiline) a catecholaminergic activity enhancer (CAE) substance acting in the brain. Pharmacol Toxicol 82(2):57–66

    PubMed  CAS  Google Scholar 

  • Kokoszka JE, Coskun P, Esposito LA, Wallace DC (2001) Increased mitochondrial oxidative stress in the Sod2 (C/K) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 98:2278–2283. doi:10.1073/pnas.051627098

    PubMed  CAS  Google Scholar 

  • Korićanac G, Vulović M, Radivojsa S, Zakula Z, Ribarac-Stepić N (2004) Age-related changes of insulin receptors, plasma insulin and glucose level. Biogerontology 5(5):345–353. doi:10.1007/s10522-004-2576-x

    PubMed  Google Scholar 

  • Kremerskothen J, Wendholt D, Teber I, Barnekow A (2002) Insulin-induced expression of the activity-regulated cytoskeleton-associated gene (ARC) in human neuroblastoma cells requires p21(ras), mitogen-activated protein kinase/extracellular regulated kinase and src tyrosine kinases but is protein kinase C-independent. Neurosci Lett 321(3):153–156. doi:10.1016/S0304-3940(01)02532-0

    PubMed  CAS  Google Scholar 

  • Kristian T, Siesjo BK (1996) Calcium-related damage in ischemia. Life Sci 59:357–367. doi:10.1016/0024-3205(96)00314-1

    PubMed  CAS  Google Scholar 

  • Kumagai AK (1999) Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab Res Rev 15:261–273. doi:10.1002/(SICI)1520-7560(199907/08)15:4<261::AID-DMRR43>3.0.CO;2-Z

    PubMed  CAS  Google Scholar 

  • Kumar JS, Menon VP (1993) Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism 42:1435–1439. doi:10.1016/0026-0495(93)90195-T

    PubMed  CAS  Google Scholar 

  • Kumar P, Taha A, Sharma D, Kale RK, Baquer NZ (2008) Effect of dehydroepiandrosterone (DHEA) on monoamine oxidase activity, lipid peroxidation and lipofuscin accumulation in aging rat brain regions. Biogerontology 9(4):235–246. doi:10.1007/s10522-008-9148-4 Erratum Biogerontology 9(4):283–284

    PubMed  CAS  Google Scholar 

  • Lakhman SS, Kaur G (1994) Effect of alloxan-induced diabetes on acetylcholinesterase activity from discrete areas of rat brain. Neurochem Int 24(2):159–163. doi:10.1016/0197-0186(94)90102-3

    PubMed  CAS  Google Scholar 

  • Lakhman SS, Kaur G (1997) Effect of experimental diabetes on monoamine oxidase activity from discrete areas of rat brain: relationship with diabetes associated reproductive failure. Mol Cell Biochem 177(1–2):15–20. doi:10.1023/A:1006851426257

    PubMed  CAS  Google Scholar 

  • Laloraya M, Kumar GP, Laloraya MM (1989) Histochemical study of superoxide dismutase in the ovary of the rat during the oestrous cycle. J Reprod Fertil 86:583–587. doi:10.1530/jrf.0.0860583

    Article  PubMed  CAS  Google Scholar 

  • Landolt H-P, Borbely AA (2001) Age-dependant changes in sleep EEG topography. Clin Neurophysiol 112:369–377. doi:10.1016/S1388-2457(00)00542-3

    PubMed  CAS  Google Scholar 

  • Lapolt PS, Yu SM, Lu JK (1988) Early treatment of young female rats with progesterone delays the aging-associated reproductive decline: a counteraction by estradiol. Biol Reprod 38(5):987–995. doi:10.1095/biolreprod38.5.987

    PubMed  CAS  Google Scholar 

  • Leong S, Lai S, CK T, Lim L, Clark JB (1981) Energy metabolizing enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556. doi:10.1111/j.1471-4159.1981.tb06326.x

    PubMed  CAS  Google Scholar 

  • Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33

    PubMed  CAS  Google Scholar 

  • Leutner S, Eckert A, Müller WE (2001) ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm 108(8–9):955–967. doi:10.1007/s007020170015

    PubMed  CAS  Google Scholar 

  • Levine JH (2006) Managing multiple cardiovascular risk factors: state of the science. J Clin Hypertens (Greenwich) 8:12–22. doi:10.1111/j.1524-6175.2006.05924.x

    Google Scholar 

  • Levy J, Gavin JR, Sowers JR (1994) Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am J Med 96:260–273. doi:10.1016/0002-9343(94)90152-X

    PubMed  CAS  Google Scholar 

  • Li L, Hölscher C (2007) Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Brain Res Rev 56(2):384–402. doi:10.1016/j.brainresrev.2007.09.001

    CAS  Google Scholar 

  • Lisman JE (1997) Bursts as a unit of neuronal information: making unreliable synapse reliable. Trends Neurosci 20:38–43. doi:10.1016/S0166-2236(96)10070-9

    PubMed  CAS  Google Scholar 

  • Liu Y, Teige I, Birnir B, Issazadeh-Navikas S (2006) Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat Med 12:518–525. doi:10.1038/nm1402

    PubMed  CAS  Google Scholar 

  • Logan JG, George MJ (1982) Hypertension and (Na–K) ATPase activity in brain. Biochem Pharmacol 31(6):1156–1158. doi:10.1016/0006-2952(82)90358-6

    PubMed  CAS  Google Scholar 

  • Logan JG, Newland AC (1982) Leucocyte sodium–potassium adenosine triphosphatase and leukemia. Clin Chim Acta 123(1–2):39–43. doi:10.1016/0009-8981(82)90111-5

    PubMed  CAS  Google Scholar 

  • Logan JG, Wong RP, Recaldin S (1982) Catecholamines inhibit Na–Ca ATPase. Biochem Pharmacol 31(7):1454–1455. doi:10.1016/0006-2952(82)90045-4

    PubMed  CAS  Google Scholar 

  • Lowry OH (1964) In morphological and biomedical correlates of activity (MM Cohen and RS Smidern) Harper and Row, New York, pp 178–191

  • Luebke JI, Chang YM, Moore TL, Rosene DL (2004) Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience 125:277–288. doi:10.1016/j.neuroscience.2004.01.035

    PubMed  CAS  Google Scholar 

  • MacDonnell PC, Greengard O (1974) Enzymes in intracellular organelles of adult and developing rat brain. Arch Biochem Biophys 163:644–655. doi:10.1016/0003-9861(74)90525-6

    PubMed  CAS  Google Scholar 

  • Maia FD, Pitombeira BS, Aráujo DT, Cunha GM, Viana GS (2004) l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Neurobiol 24(1):87–100. doi:10.1023/B:CEMN.0000012727.59502.c5

    PubMed  CAS  Google Scholar 

  • Makar TK, Rimpel-Lamhaouar K, Abraham DG, Gokhale VS, Cooper AJL (1995) Antioxidant defense systems in the brains of type II diabetic mice. J Neurochem 65:287–291

    Article  PubMed  CAS  Google Scholar 

  • Malmo HP, Malmo RB (1982) Multiple unit activity recorded longitudinally in rats from pubescence to old age. Neurobiol Aging 3:43–53. doi:10.1016/0197-4580(82)90060-4

    PubMed  CAS  Google Scholar 

  • Mancuso C, Bates TE, Butterfield DA, Calafato S, Cornelius C, De Lorenzo A, Dinkova Kostova AT, Calabrese V (2007) Natural antioxidants in Alzheimer’s disease. Expert Opin Investig Drugs 16(12):1921–1931. doi:10.1517/13543784.16.12.1921

    PubMed  CAS  Google Scholar 

  • Mankovsky BN, Metzger BE, Molitch ME, Biller J (1997) Cerebrovascular disorders in patients with diabetes mellitus. J Diabetes Complications 10:228–242. doi:10.1016/S1056-8727(96)90006-9

    Google Scholar 

  • Mann DM, Yates PO (1974) Lipoprotein pigments—their relationship to ageing in the human nervous system: I. The lipofuscin content of nerve cells. Brain 97:481–488. doi:10.1093/brain/97.1.481

    PubMed  CAS  Google Scholar 

  • Mantha AK, Moorthy K, Cowsik SM, Baquer NZ (2006) Membrane associated functions of neurokinin B (NKB) on amyloid-beta (25–35) induced toxicity in aging rat brain synaptosomes. Biogerontology 7(1):19–33. doi:10.1007/s10522-005-6044-z

    PubMed  CAS  Google Scholar 

  • Markowska AL, Ingram DK, Barnes CA, Spangler EL, Lemken VJ, Kametani H, Yee W, Olton DS (1990) Acetyl-1-carnitine. 1: effects on mortality, pathology and sensory-motor performance in aging rats. Neurobiol Aging 11(5):491–498. doi:10.1016/0197-4580(90)90109-D

    PubMed  CAS  Google Scholar 

  • Marrone DF, LeBoutillier JC, Petit TL (2004) Changes in synaptic ultrastructure during reactive synaptogenesis in the rat dentate gyrus. Brain Res 1005:124–136. doi:10.1016/j.brainres.2004.01.041

    PubMed  CAS  Google Scholar 

  • Mayanil CSK, Kazmi SMI, Baquer NZ (1982a) Na+K+ ATPase and Mg2+ ATPase activities in different regions of rat brain during alloxan diabetes. J Neurochem 39:903–908. doi:10.1111/j.1471-4159.1982.tb11475.x

    PubMed  CAS  Google Scholar 

  • Mayanil CSK, Kazmi SMI, Baquer NZ (1982b) Changes in monoamine oxidase activity in rat brain during alloxan diabetes. J Neurochem 38:179–183. doi:10.1111/j.1471-4159.1982.tb10869.x

    PubMed  CAS  Google Scholar 

  • McIlwain H, Bachelard HS (1985) Biochemistry and the central nervous system, 5th edn. Elseiver health Sciences, Churchill Livingstone, Edinburgh

    Google Scholar 

  • McLean P, Kunjara S, Greenbaum AL, Gumaa K, López-Prados J, Martin-Lomas M, Rademacher TW (2008) Reciprocal control of pyruvate dehydrogenase kinase and phosphatase by inositol phosphoglycans. Dynamic state set by “push–pull” system. J Biol Chem 283(48):33428–33436. doi:10.1074/jbc.M801781200

    PubMed  CAS  Google Scholar 

  • Meier-Ruge W, Iwenoff P, Reichlmeier K (1984) Neurochemical enzyme changes in Alzheimer’s disease and Pick’s disease. Arch Gerontol Geriatr 3:161–165. doi:10.1016/0167-4943(84)90007-4

    PubMed  CAS  Google Scholar 

  • Messier C, Gagnon M (1996) Glucose regulation and cognitive functions: relation to Alzheimer’s disease and diabetes. Behav Brain Res 75:1–11. doi:10.1016/0166-4328(95)00153-0

    PubMed  CAS  Google Scholar 

  • Migliaccio A, Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300

    PubMed  CAS  Google Scholar 

  • Minamoto H, Tachibana H, Sugita M, Okita T (2001) Recognition memory in normal aging and parkinson’s disease: behavioral and electrophysiological measures. Brain Res Cogn Brain Res 11:23–32. doi:10.1016/S0926-6410(00)00060-4

    PubMed  CAS  Google Scholar 

  • Miquel J (1992) An update on the mitochondrial-DNA mutation hypothesis of cell aging. Mutat Res 275(3–6):209–216

    PubMed  CAS  Google Scholar 

  • Mizumori SJY, Lavoie AM, Kalyani A (1996) Redistribution of spatial representation in the hippocampus of aged rats performing a spatial memory task. Behav Neurosci 110:1006–1016. doi:10.1037/0735-7044.110.5.1006

    PubMed  CAS  Google Scholar 

  • Mohamad S, Taha A, Bamezai RN, Basir SF, Baquer NZ (2004) Lower doses of vanadate in combination with trigonella restore altered carbohydrate metabolism and antioxidant status in alloxan-diabetic rats. Clin Chim Acta 342(1–2):105–114. doi:10.1016/j.cccn.2003.12.005

    PubMed  CAS  Google Scholar 

  • Monti B, Virigili M, Contestabile A (2004) Alterations of markers related to synaptic function in aging rat brain, in normal conditions or under conditions of long-term dietary manipulation. Neurochem Int 44:579–584. doi:10.1016/j.neuint.2003.10.007

    PubMed  CAS  Google Scholar 

  • Mooradian AD, Smith TL (1992) The effect of experimentally induced diabetes mellitus on the lipid order and composition of rat cerebral microvessels. Neurosci Lett 145:145–148. doi:10.1016/0304-3940(92)90007-T

    PubMed  CAS  Google Scholar 

  • Moorthy K, Yadav UCS, Mantha AK, Cowsik SM, Sharma D, Baquer NZ (2004a) Effect of estradiol and progesterone treatment on lipid profile in naturally menopausal rats from different age groups. Biogerontology 5(6):1–9. doi:10.1007/s10522-004-3190-7

    Google Scholar 

  • Moorthy K, Yadav UCS, Siddiqui MR, Basir SF, Sharma D, Baquer NZ (2004b) Effect of estradiol and progesterone treatment on carbohydrate metabolizing enzymes in tissues of aging female rats. Biogerontology 5(4):249–259. doi:10.1023/B:BGEN.0000038026.89337.02

    PubMed  CAS  Google Scholar 

  • Moorthy K, Yadav UC, Siddiqui MR, Mantha AK, Basir SF, Sharma D, Cowsik SM, Baquer NZ (2005a) Effect of hormone replacement therapy in normalizing age related neuronal markers in different age groups of naturally menopausal rats. Biogerontology 6:345–356. doi:10.1007/s10522-005-4810-6

    PubMed  CAS  Google Scholar 

  • Moorthy K, Sharma D, Basir SF, Baquer NZ (2005b) Administration of estradiol and progesterone modulate the activities of antioxidant enzyme and aminotransferases in naturally menopausal rats. Exp Gerontol 40(4):295–302. doi:10.1016/j.exger.2005.01.004

    PubMed  CAS  Google Scholar 

  • Morley P, Whitfield JF, Vanderhyden BC, Tsang BK, Schwartz JL (1992) A new, nongenomic estrogen action: the rapid release of intracellular calcium. Endocrinology 131:1305–1312. doi:10.1210/en.131.3.1305

    PubMed  CAS  Google Scholar 

  • Murchison D, Griffith WH (1995) Low-voltage activated calcium current increase in basal for brain neurons from aged rats. J Neurophysiol 74:876–887

    PubMed  CAS  Google Scholar 

  • Murthy ASN, Baquer NZ (1980) Changes in pyruvate dehydrogenase in brain regions during alloxan diabetes. Arch Biochem Biophys 204:264–269. doi:10.1016/0003-9861(80)90032-6

    PubMed  CAS  Google Scholar 

  • Murthy ASN, Ali F, Baquer NZ (1980) Effect of thyroidectomy and alloxan diabetes on rat brain arginase. Indian J Biochem Biophys 17:45–47

    PubMed  CAS  Google Scholar 

  • Nelson PT, Smith CD, Abner EA, Schmitt FA, Scheff SW, Davis GJ, Keller JN, Jicha GA, Davis D, Wang-Xia W, Hartman A, Katz DG, Markesbery WR (2009) Human cerebral neuropathology of type 2 diabetes mellitus. Biochim Biophys Acta 1792:454–469

    PubMed  CAS  Google Scholar 

  • Nikulin VV, Brismar T (2005) Long-range temporal correlations in electroencephalographic oscillations: relation to topography, frequency band, age and gender. Neuroscience 130:549–558. doi:10.1016/j.neuroscience.2004.10.007

    PubMed  CAS  Google Scholar 

  • Nodera H, Bostock H, Kuwabara S, Sakamato T, Asanuma K, Jia-Ying S, Ogawara K, Hattori N, Hirayama M, Sobue G, Kaji R (2004) Nerve excitability properties in Charcot-Marie-tooth disease type I. Brain 127(Part I):203–211. doi:10.1093/brain/awh020

    PubMed  Google Scholar 

  • Nygard M, Hill RH, Wikstrom MA, Kristensson K (2005) Age-related changes in electrophysiological properties of the mouse suprachismatic nucleus in vitro. Brain Res Bull 65:149–154. doi:10.1016/j.brainresbull.2004.12.006

    PubMed  Google Scholar 

  • Ohlansky SJ, Hayflick L, Perls TT (2004) Antiaging medicine: the hype and the reality-part 1. J Gerontology: Biol Sci 59A:513–514

    Google Scholar 

  • Olpe HR, Steinmann M (1982) Age-related decline in the activity of noradrenergic neurons of the rat locus coeruleus. Brain Res 151:174–176. doi:10.1016/0006-8993(82)91287-2

    Google Scholar 

  • Pajovic S, Nikezic G, Martinovic JV (1993) Effects of ovarian steroids in superoxide dismutase activity in the rat brain. Exprientia 49:73–75. doi:10.1007/BF01928794

    CAS  Google Scholar 

  • Pekiner C, Cullum NA, Hughes JN, Hargreaves AJ, Mahon J, Casson IF (1993) Glycation of brain actin in experimental diabetes. J Neurochem 61:436–442

    PubMed  CAS  Google Scholar 

  • Pelosi L, Holly M, Slade T, Hayward M, Barret G, Blumhardt LD (1992) Event-related potential (ERP) correlates of performance of intelligence tests. Electroencephalograpr clin Neurophysiol 84:515–520

    CAS  Google Scholar 

  • Pelosi L, Blumhardt LD (1999) Effects of age on working memory: an event-related potential study. Brain Res Cogn Brain Res 7:321–334. doi:10.1016/S0926-6410(98)00035-4

    PubMed  CAS  Google Scholar 

  • Peng MT, Peng YI, Chen FN (1977) Age-dependent changes in the oxygen consumption of the cerebral cortex, hypothalamus, hippocampus and amygdaloid in rats. J Grrontol 32:517–522

    CAS  Google Scholar 

  • Pette D (1966) Mitochondrial enzyme activities. In: Tager JM, Papa S, Quagliariello E, Slater EC (eds) Regulation of metabolic processes in mitochondria. Elsevier, Amsterdam, p 28

    Google Scholar 

  • Pfutz EM, Sommer W, Schweinberger SR (2002) Age-related slowing in face and name recognition: evidence from event-related brain potentials. Psychol Aging 17:140–160. doi:10.1037/0882-7974.17.1.140

    Google Scholar 

  • Poon HF, Vaishnav RA, Getchell TV, Getchell ML, Butterfield DA (2006) Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice. Neurobiol Aging 27(7):1010–1019. doi:10.1016/j.neurobiolaging.2005.05.006

    PubMed  CAS  Google Scholar 

  • Potier B, Rascol O, Jazat F, Lamour Y, Dutar P (1992) Alteration in the proportion of hippocampal pyramidal neurons in the aged rat. Neuroscience 48:793–806. doi:10.1016/0306-4522(92)90267-6

    PubMed  CAS  Google Scholar 

  • Potier BY, Lamour Y, Dutar P (1993) Age-related alterations in the properties of hippocampal memory in young, mature and aged rats. Brain Res Bull 33:17–25

    Google Scholar 

  • Preet A, Gupta BL, Siddiqui MR, Yadav PK, Baquer NZ (2005) Restoration of ultrastructural and biochemical changes in alloxan induced diabetic rat sciatic nerve on treatment with Na3VO4 and Trigonella a promising antidiabetic agent. Mol Cell Biochem 278:21–31. doi:10.1007/s11010-005-7815-1

    PubMed  CAS  Google Scholar 

  • Pueschel SM (2006) The effect of acetyl-l-carnitine administration on persons with Down syndrome. Res Dev Disabil 27(6):599–604. doi:10.1016/j.ridd.2004.07.009

    PubMed  Google Scholar 

  • Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 273:32730–32738. doi:10.1074/jbc.273.49.32730

    PubMed  CAS  Google Scholar 

  • Racchi M, Govoni S, Solerte SB, Galli CL, Corsini E (2001) Dehydroepiendrosterone and the relationship with a ging and memory: a possible link with protein kinase C functional machinery. Brain Res Brain Res Rev 37:287–293. doi:10.1016/S0165-0173(01)00132-1

    PubMed  CAS  Google Scholar 

  • Rattan SI, Singh R (2009) Progress and prospects: gene therapy in aging. Gene Ther 16(1):3–9. doi:10.1038/gt.2008.166

    PubMed  CAS  Google Scholar 

  • Rehman HU, Masson EA (2001) Neuroendocrinology of ageing. Age Ageing 30(4):279–287. doi:10.1093/ageing/30.4.279

    PubMed  CAS  Google Scholar 

  • Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a congress series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212. doi:10.1002/dmrr.196

    PubMed  CAS  Google Scholar 

  • Roy DW, Jack G (1999) Regulation of glucose transporters by estradiol in the immature rat uterus. Endocrinology 140:3602–3608. doi:10.1210/en.140.8.3602

    Google Scholar 

  • Roy D, Singh R (1988) Age-related changes in multiple unit activity in the rat brain parietal cortex and the effect of centrophenoxine. Exp Gerontol 34:161–174. doi:10.1016/0531-5565(88)90003-4

    Google Scholar 

  • Roy D, Pathak DN, Singh R (1983) Effect of centrophenoxine on the antioxidative enzymes in various regions of the aging rat brain. Exp Gerontol 18(3):185–197. doi:10.1016/0531-5565(83)90031-1

    PubMed  CAS  Google Scholar 

  • Ryan CM, Geckle MO (2000) Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care 23:1486–1493. doi:10.2337/diacare.23.10.1486

    PubMed  CAS  Google Scholar 

  • Ryle C, Leow CK, Donaghy M (1997) Nonenzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve 20:577–584. doi:10.1002/(SICI)1097-4598(199705)20:5<577::AID-MUS6>3.0.CO;2-6

    PubMed  CAS  Google Scholar 

  • Sabri O, Hellwig D, Schreckenberger M, Schneider R, Kaiser HJ, Wagenknecht G, Mull M, Buell U (2000) Influence of diabetes mellitus on regional cerebral glucose metabolism and regional cerebral blood flow. Nucl Med Commun 21:19–29. doi:10.1097/00006231-200001000-00005

    PubMed  CAS  Google Scholar 

  • Sacks WJ (1965) Cerebral metabolism of doubly labeled glucose on humans in vivo. Appl Physiol 20:117–130

    CAS  Google Scholar 

  • Saggerson D (2009) Getting to grips with the pentose phosphate pathway in 1953. Biochem J. doi:10.1042/BJ20081961

  • Salek-Haddadi A, Friston KJ, Lemieux L, Fish DR (2003) Studying spontaneous EEG activity with fMRI. Brain Res Brain Res Rev 43:110–133. doi:10.1016/S0165-0173(03)00193-0

    PubMed  CAS  Google Scholar 

  • Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24:855–872. doi:10.1016/S0149-7634(00)00040-3

    PubMed  CAS  Google Scholar 

  • Schwartz MW, Baskin DG, Kaiyala KJ, Woods SC (1999) Model for the regulation of energy balance and adiposity by the central nervous system. Am J Clin Nutr 69:584–596

    PubMed  CAS  Google Scholar 

  • Shafrir E (1997) Diabetes in animals: contribution to the understanding of diabetes by study of its etiopathology in animal models. In: Porte JRD, Sherwin RS (eds) Ellenberg and Rifkin’s diabetes mellitus; theory and practice. Appleton and Lange, Stamford, pp 301–348

    Google Scholar 

  • Sharma M, Gupta YK (2001) Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. Life Sci 68:1021–1029. doi:10.1016/S0024-3205(00)01005-5

    PubMed  CAS  Google Scholar 

  • Sharma D, Maurya AK, Singh R (1993) Age-related decline in multiple unit action potentials of CA3 region of rat hippocampus: correlation with lipid peroxidation and lipofuscin concentration and the effect of centrophenoxine. Neurobiol Aging 14:319–330. doi:10.1016/0197-4580(93)90117-T

    PubMed  CAS  Google Scholar 

  • Sharma D, Sethi P, Hussain E, Singh R (2008) Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress Na+K+ ATPase and protein kinase C in adult and old rat brain. Biogerontology (in press)

  • Shen JM, Barnes CA (1996) Age-related decrease in cholinergic synaptic transmission in three hippocampal subfields. Neurobiol Aging 17:439–451. doi:10.1016/0197-4580(96)00020-6

    PubMed  CAS  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778. doi:10.1073/pnas.91.23.10771

    PubMed  CAS  Google Scholar 

  • Siddiqui MR, Taha A, Moorthy K, Hussain E, Basir SF, Baquer NZ (2005) Amelioration of altered antioxidants status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains. J Biosci 30(4):483–490. doi:10.1007/BF02703722

    PubMed  CAS  Google Scholar 

  • Singh HK, Dhawan BN (1997) Neuropsychopharmacological effects of the ayurvedic nootropic B, monniera LINN (Brahmi). Indian J Pharmacol 29:S359–S365

    Google Scholar 

  • Singh R, Sharma D (2005) Electrophysiological Ageing of the Brain and pharmacology of Ageing. Cellular and Molecular Brain Ageing In: Thakur MK (ed) Pub M/s Narosa Publishers, New Delhi, p 135

  • Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146. doi:10.1007/s001250051591

    PubMed  CAS  Google Scholar 

  • Sinha N, Baquer NZ, Sharma D (2005) Anti-lipidperoxidative role of exogenous dehydroepiendrosterone (DHEA) administration in normal ageing rat brain. Indian J Exp Biol 43:420–424

    PubMed  CAS  Google Scholar 

  • Sinha N, Taha A, Baquar NZ, Sharma D (2008) Exogenous administration of dehydroepiendrosterone attenuates loss of superoxide dismutase activity in the brain of old rats. Indian J Biophys Biochem 45:57–60

    CAS  Google Scholar 

  • Smith SJ, Thompson SH (1987) Slow membrane currents in bursting pace-maker neurons of Tritonia. J Physiol 382:425–448

    PubMed  CAS  Google Scholar 

  • Sochor M, Baquer NZ, Hothersall JS, McLean P (1977) Effects of experimental diabetes on ornithine decarboxylase activity in rat tissues. Biochem Biophys Res Commun 80:533–539. doi:10.1016/0006-291X(78)91601-7

    Google Scholar 

  • Sochor M, Baquer NZ, Hothersall JS, McLean P (1990) Effect of experimental diabetes on the activities of hexokinase isoenzymes in tissues of the rat. Biochem Int 22(3):467–474

    PubMed  CAS  Google Scholar 

  • Sohal RS, Brunk UT (1989) Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol 266:17–26

    PubMed  CAS  Google Scholar 

  • Sohal RS, Mockett RJ, Orr WC (2000) Current issues concerning the role of oxidative stress in aging: a perspective. Results Probl Cell Differ 29:45–66

    PubMed  CAS  Google Scholar 

  • Srivastava LK, Baquer NZ (1984) Changes in the phosphofructokinase and pyruvate kinase in rat brain regions during alloxan diabetes. Enzyme 32:84–88

    PubMed  CAS  Google Scholar 

  • Standford JA, Gerhardt GA (2004) Aged F344 rats exhibit altered electrophysiological activity in locomotor-unrelated but not locomotor-related striatal neurons. Neurobiol Aging 25:509–515. doi:10.1016/S0197-4580(03)00128-3

    Google Scholar 

  • Sugaya A, Sugimioto H, Mogi N, Tsujigami H, Deguchi S (2004) Experimental diabetes accelerates accumulation of fluorescent pigments in rat trigeminal neurons. Brain Res 999(1):132–134. doi:10.1016/j.brainres.2003.11.033

    PubMed  CAS  Google Scholar 

  • Sultana R, Perluigi M, Butterfield DA (2006) Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 8(11–12):2021–2037. doi:10.1089/ars.2006.8.2021

    PubMed  CAS  Google Scholar 

  • Sun YA, Samorajiski T (1975) The effect of age and alcohol on (Na+ K+ ATPase activity of whole homogenate and synaptosomes from mouse and human brain. J Neurochem 24:161–169

    PubMed  CAS  Google Scholar 

  • Svoboda P, Mosinger B (1981) Catecholamines and the brain microsomal Na+, K+ adenosinetriphosphatase–I. Protection against pipoperoxidative damage. Biochem Pharmacol 30:427–432

    PubMed  CAS  Google Scholar 

  • Szutowiez A, Hanna B, Gul S, Zielinski PawelczykT, Tomaszewicz M (2005) Nerve growth factor and acetyl-l-carnitine evoked shifts in acetyl-co-A and cholinergic SN56 cell vulnerability to neurotoxic inputs. J Neurosci Res 79:185–192. doi:10.1002/jnr.20276

    Google Scholar 

  • Taha A, Mishra M, Baquer NZ, Sharma D (2008) Response of Na+, K+-ATPase activity to the exogenous dehydroepiandrosterone administration in the old rat brain regions. Indian J Exp Biol 46:852–854

    PubMed  CAS  Google Scholar 

  • Takahata K, Minami A, Kusumoto H, Shimazu S, Yoneda F (2005) Effects of selegiline alone or with donepezil on memory impairment in rats. Eur J Pharmacol 518(2–3):140–144. doi:10.1016/j.ejphar.2005.06.024

    PubMed  CAS  Google Scholar 

  • Takeda S, Matsuzawa T (1985) Age-related brain atrophy: a study with computed tomography. J Gerontol 40(2):159–163

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Ando S (1990) Synaptic aging as revealed by changes in membrane potential and decreased activity of Na+K+ATPase. Brain Res 506:46–52. doi:10.1016/0006-8993(90)91197-O

    PubMed  CAS  Google Scholar 

  • Taylor L, Griffith WH (1993) Age-related decline in cholinergic synaptic transmission in hippocampus. Neurobiol Aging 14:509–515. doi:10.1016/0197-4580(93)90110-W

    PubMed  CAS  Google Scholar 

  • Terman A, Brunk UT (2006) Oxidative stress, accumulation of biological ‘garbage’ and aging. Antioxid Redox Signal 8:197–204. doi:10.1089/ars.2006.8.197

    PubMed  CAS  Google Scholar 

  • Thal LJ, Carta A, Clarke WR, Ferris SH, Friedland RP, Petersen RC, Pettegrew JW, Pfeiffer E, Raskind MA, Sano M, Tuszynski MH, Woolson RF (1996) A 1-year multicenter placebo-controlled study of acetyl-l-carnitine in patients with Alzheimer’s disease. Neurology 47(3):705–711

    PubMed  CAS  Google Scholar 

  • Thal LJ, Calvani M, Amato A, Carta A (2000) A 1-year controlled trial of acetyl-l-carnitine in early-onset AD. Neurology 55(6):805–810

    PubMed  CAS  Google Scholar 

  • Thomas DK, Storlien LH, Bellingham WP, Gillette K (1986) Ovarian hormone effects on activity, glucoregulation and thyroid hormones in the rat. Physiol Behav 36:567–573. doi:10.1016/0031-9384(86)90332-X

    PubMed  CAS  Google Scholar 

  • Thurston JH, Hanhart RE, Jones EM, Jones EM, Ater JL (1975) Effects of alloxan diabetes, anti-insulin serum diabetes and non-diabetic dehydration on brain carbohydrate and energy metabolism in young mice. J Biol Chem 250:1751

    PubMed  CAS  Google Scholar 

  • Tripathy A, Srivastava UC (2008) Acetylcholinesterase: a versatile enzyme of nervous system. Ann Neurosci 15:106–111

    Article  Google Scholar 

  • Troni Q, Carta R, Cantello MT, Caselle MT, Rainero I (1984) Peripheral nerve function and metabolic control in diabetes mellitus. Ann Neurol 16:178–183. doi:10.1002/ana.410160204

    PubMed  CAS  Google Scholar 

  • Valdes CT, Elkind-Hirsch KE, Rogers DG, Adelman JP (1991) The hypothalamic-pituitary axis of streptozotocin-induced diabetic female rats is not normalized by estradiol replacement. Endocrinology 128(1):433–440

    Article  PubMed  CAS  Google Scholar 

  • Vaney N, Chouhan S, Bhatia MS, Tandon OP (2002) Event related evoked potentials in dementia: role of vitamin E. Indian J Physiol Pharmacol 46(1):61–68

    PubMed  CAS  Google Scholar 

  • Veiga S, Melcangi RC, Doncarlos LL, Garcia-Segura LM, Azcoitia I (2004) Sex hormones and brain aging. Exp Gerontol 39(11–12):1623–1631. doi:10.1016/j.exger.2004.05.008

    PubMed  CAS  Google Scholar 

  • Vitorica J, Satrústegui J (1986) The influence of age on the calcium-efflux pathway and matrix calcium buffering power in brain mitochondria. Biochim Biophys Acta 851(2):209–216. doi:10.1016/0005-2728(86)90127-1

    PubMed  CAS  Google Scholar 

  • Vlassara H, Brownlee M, Cerami A (1983) Excessive non enzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes 32:670–674. doi:10.2337/diabetes.32.7.670

    PubMed  CAS  Google Scholar 

  • Watt JA, Pike CJ, Walencewicz-Wasserman AJ, Cotman CW (1994) Ultrastructural analysis of beta-amyloid-induced apoptosis in cultured hippocampal neurons. Brain Res 661:147–156. doi:10.1016/0006-8993(94)91191-6

    PubMed  CAS  Google Scholar 

  • Wilson PD (1973) Enzyme changes in ageing mammals. Ceron-fologiu 19:79–125

    CAS  Google Scholar 

  • Wilson JA, Ikonen S, Gallagher M, Eichenbaum H, Tanila H (2005) Age-associated alterations of hippocampal place cells are subregion specific. J Neurosci 25:6877–6886. doi:10.1523/JNEUROSCI.1744-05.2005

    PubMed  CAS  Google Scholar 

  • Winterer G, Goldman D (2003) Genetics of human prefrontal function. Brain Res Brain Res Rev 43:134–163. doi:10.1016/S0165-0173(03)00205-4

    PubMed  CAS  Google Scholar 

  • Wohaieb SA, Godin DV (1987) Alterations in tissue antioxidant systems in the spontaneously diabetic (BB Wistar) rat. Can J Physiol Pharmacol 65:2191–2195

    PubMed  CAS  Google Scholar 

  • Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. Biochem J 245:243–250

    PubMed  CAS  Google Scholar 

  • Wolff SP, Jiang ZY, Hunt JV (1991) Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 10:339–352. doi:10.1016/0891-5849(91)90040-A

    PubMed  CAS  Google Scholar 

  • Zhang ZW (2004) Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic functions. J Neurophysiol 91:1171–1182. doi:10.1152/jn.00855.2003

    PubMed  Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902. doi:10.1074/jbc.274.49.34893

    PubMed  CAS  Google Scholar 

  • Zubairu S, Hothersall JS, McLean P, Greenbaum AL (1982) Age-related changes in enzymes of rat brain. III. Hydrogen-transfer systems in relation to the disposition of acetyl groups in the brain. Enzyme 27(2):130–136

    PubMed  CAS  Google Scholar 

  • Zubairu S, Hothersall JS, El-Hassan A, McLean P, Greenbaum AL (1983) Alternative pathways of glucose utilization in brain: changes in the pattern of glucose utilization and of the response of the pentose phosphate pathway to 5-hydroxytryptamine during aging. J Neurochem 41(1):76–83. doi:10.1111/j.1471-4159.1983.tb11816.x

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support in the form of projects from University Grants Commission, and Indian Council of Medical Research, India. Pardeep Kumar is the recipient of SRF from Council of Scientific and Industrial Research, New Delhi, India. This work was in part supported by a grant for International Scientific Cooperation. This review is dedicated to late Prof. A. L. Greenbaum, Professor of Biochemistry, University College of London, UK for appreciation of his wide knowledge of teaching biochemistry and excellent communications and writing skills of scientific work to make it easily understood by students, scholars and researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najma Z. Baquer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baquer, N.Z., Taha, A., Kumar, P. et al. A metabolic and functional overview of brain aging linked to neurological disorders. Biogerontology 10, 377–413 (2009). https://doi.org/10.1007/s10522-009-9226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-009-9226-2

Keywords

Navigation