Skip to main content
Log in

Error-protein metabolism and ageing

  • Opinion
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Ageing and many associated pathologies are accompanied by accumulation of altered proteins. It is suggested that erroneous polypeptide biosynthesis, cytosolic and mitochondrial, is not an insignificant source of aberrant protein in growing and non-mitotic cells. It is proposed that (i) synthesis of sufficient proteases and chaperone proteins necessary for rapid elimination of altered proteins, from cytoplasmic and mitochondrial compartments, is related to cellular protein biosynthetic potential, and (ii) cells growing slowly, or not at all, automatically generate lower levels of protease/chaperone molecules than cells growing rapidly, due to decreased general rate of protein synthesis and lowered amount of error-protein produced per cell. Hence the increased vulnerability of mature organisms may be explained, at least in part, by the decline in constitutive protease/chaperone protein biosynthesis. Upregulation of mitochondria biogenesis, induced by dietary restriction or aerobic exercise, may also increase protease/chaperone protein synthesis, which would improve cellular ability to degrade both error-proteins and proteins damaged post-synthetically by reactive oxygen species etc. These proposals may help explain, in part, the latency of those age-related pathologies where altered proteins accumulate only late in life, and the beneficial effects of aerobic exercise and dietary restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alemi M, Prigione A, Wong A, Schoenfeld R, DiMauro S, Hirano M, Taroni F, Cortopassi G (2007) Mitochondrial DNA deletions inhibit proteasomal activity and stimulate an autophagic transcript. Free Radic Biol Med 42:32–43

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, Barger JL, Edwards MG, Braun KH, O’Conner CE, Prolla TA, Weindruch R (2008) Dynamic regulation of PGC-1α localization and turnover implicates mitochondrial adaptation in caloric restriction and the stress response. Aging Cell 7:101–111

    Article  PubMed  CAS  Google Scholar 

  • Ayala V, Naudi A, Sanz A, Caro P, Portero-Otin M, Barja G, Pamplona R (2007) Dietary protein restriction decreases oxidative damage, peroxidizability index, and mitochondrial complex 1 content in rat liver. J Gerontol A Biol Sci Med Sci 62:352–360

    PubMed  Google Scholar 

  • Bali P, Pranpat M, Bradner J, Balasis M, Fiscus W, Gua F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90. J Biol Chem 250:28729–28734

    Google Scholar 

  • Bergamini E, Cavallini G, Donati A, Gori Z (2007) The role of autophagy in aging. Its essential part in the anti-aging mechanism of caloric restriction. Ann N Y Acad Sci 1114:69–78

    Article  PubMed  CAS  Google Scholar 

  • Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signalling extends chronological life span via increased respiration and upregulated mitochondrial gene expression. Cell Metab 5:265–277

    Article  PubMed  CAS  Google Scholar 

  • Bota DA, Davies KJA (2001) Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Mitochondrion 1:33–49

    Article  PubMed  CAS  Google Scholar 

  • Bowerman B (2007) C. elegans aging: proteolysis cuts both ways. Curr Biol 17:R514–R516

    Article  PubMed  CAS  Google Scholar 

  • Broadley SA, Hartl FU (2007) Mitochondrial stress signalling: a pathway unfolds. Trends Cell Biol 18:1–4

    Article  PubMed  CAS  Google Scholar 

  • Bulteau AL, Szweda LI, Friguet B (2006) Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 41:653–657

    Article  PubMed  CAS  Google Scholar 

  • Carrard G, Bulteau A-L, Petropoulos I, Friguet B (2002) Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 34:1461–1474

    Article  PubMed  CAS  Google Scholar 

  • Chiocchetti A, Zhou J, Zhu H, Karl T, Haubenreisser O, Rinnerthaler M, Heeren G, Oender K, Bauer J, Hintner H, Breitenbach M, Breitenbach-Koller L (2007) Ribosomal proteins Rp110 and Rps6 are potent regulators of yeast replicative life span. Exp Gerontol 42:275–286

    Article  PubMed  CAS  Google Scholar 

  • Chondrogianni N, Gonos ES (2007) Overexpression of hUMP11/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defence. Exp Gerontol 42:899–903

    Article  PubMed  CAS  Google Scholar 

  • Chuang SM, Chen L, Lambertson D, Anand M, Kinzy TG, Madura K (2005) Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol 25:403–413

    Article  PubMed  CAS  Google Scholar 

  • Conley KE, Marcinek DJ, Villarin J (2007) Mitochondrial dysfunction and age. Curr Opin Clin Nutr Metab Care 10:688–692

    Article  PubMed  CAS  Google Scholar 

  • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcription complex. Nature 450:736–740

    Article  PubMed  CAS  Google Scholar 

  • Dahlmann B (2007) Role of proteasomes in disease. BMC Biochem 8:S3–S15

    Article  PubMed  CAS  Google Scholar 

  • Das R, Ponnappan S, Ponnappan U (2007) Redox regulation of the proteasome in T lymphocytes during aging. Free Radic Biol Med 42:541–551

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Keller JN (2001) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77:1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Dimayuga E, Markesbery WR, Keller JN (2006) Proteasome inhibition induces reversible impairments in protein synthesis. FASEB J 20:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, Cecarini V, Keller JN (2007) Interplay between protein synthesis and degradation in the CNS: physiological and pathological implications. Trends Neurosci 30:31–36

    Article  PubMed  CAS  Google Scholar 

  • Dohmen RJ, Willers I, Marques AJ (2007) Biting the hands that feeds: Rpn4-dependent feedback regulation of proteasome function. Biochim Biophys Acta 1773:1599–1604

    Article  PubMed  CAS  Google Scholar 

  • Donati A (2006) The involvement of macroautophagy in aging and anti-aging interventions. Mol Aspects Med 27:455–470

    Article  PubMed  CAS  Google Scholar 

  • Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged protein in Sir2 mutants can be suppressed by overproducing the protein aggregation remodelling factor Hsp 104p. Genes Dev 21:2410–2422

    Article  PubMed  CAS  Google Scholar 

  • Frier CF, Locke M (2007) Heat stress inhibits skeletal muscle hypertrophy. Cell Stress Chaperones 12:132–141

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Raveh D (2005) Proteasome plasticity. FEBS Lett 579:3214–3223

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (2008) Mitochondria—a nexus for aging, calorie restriction and sirtuins. Cell 132:171–175

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Taubert T, Crawford D, Libina N, Lee S-J, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    Article  PubMed  CAS  Google Scholar 

  • Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D (2007) ClpP mediates activation of a mitochondrial unfolded response in C. elegans. Dev Cell 4:467–480

    Article  CAS  Google Scholar 

  • Hellstrom-Lindahl E, Ravid R, Nordberg A (2008) Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with Aβ levels. Neurobiol Aging 29:210–221

    Article  PubMed  CAS  Google Scholar 

  • Hiona A, Leeuwenburgh C (2008) The role of mitochondrial DNA mutations in aging and sarcopenia: implications for the mitochondrial vicious cycle theory of aging. Exp Gerontol 43:24–33

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR (2003a) Do developmentally-related changes in constitutive proteolysis affect aberrant protein accumulation and generation of the aged phenotype? Mech Ageing Dev 124:575–579

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR (2003b) Errors, mitochondrial dysfunction and ageing. Biogerontology 4:397–400

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR (2006) Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol 41:464–473

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR (2007) On why decreasing protein synthesis can increase lifespan. Mech Ageing Dev 128:412–414

    Article  PubMed  CAS  Google Scholar 

  • Holbrook MA, Menninger JR (2002) Erythromycin slows aging in Saccharomyces cerevisiae. J Gerontol A Biol Sci Med Sci 57A:B29–B36

    CAS  Google Scholar 

  • Holliday R, Rattan SIS (1984) Evidence that paromomycin induces premature ageing in human fibroblasts. Monogr Dev Biol 17:221–233

    PubMed  CAS  Google Scholar 

  • Howell N, Elson JL, Chinnery PF, Turnbull DM (2005) mtDNA mutations and common neurodegenerative disorders. Trends Genet 21:583–586

    Article  PubMed  CAS  Google Scholar 

  • Ingraham JL, Maaloe D, Neidhardt FC (1983) Growth of the bacterial cell. Sinauer Associates, Sunderland

    Google Scholar 

  • Ju D, Wang L, Mao X, Xie Y (2004) Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochem Biophys Res Commun 321:51–57

    Article  PubMed  CAS  Google Scholar 

  • Kalogeraki A, Giannikaki E, Tzardi M, Kafousi M, Ieromonachou P, Dariviannaki K, Askoxylakis J, Tsiftsis D, Stathopoulos E, Zoras O (2007) Correlation of heat shock protein (HSP70) expression with cell proliferation (MIB1), estrogen receptors (ER) and clinicopathological variables in invasive ductal breast carcinomas. J Exp Clin Cancer Res 26:367–368

    PubMed  CAS  Google Scholar 

  • Kim I, Rodriguex-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TBL, Holliday R, Rosenberger RF (1984) The stability of the cellular translation process. Int Rev Cytol 92:93–132

    Article  PubMed  CAS  Google Scholar 

  • Kleijnen MF, Roelofs J, Park S, Hathaway N, Glickman M, King RW, Finley D (2007) Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14:1180–1186

    Article  PubMed  CAS  Google Scholar 

  • Ksiazek K, Passos J, Olijslagers S, von Zglinicki T (2008) Mitochondrial dysfunction is a possible cause of accelerated senescence of mesothelial cells exposed to high glucose. Biochem Biophys Res Commun 366:793–799

    Article  PubMed  CAS  Google Scholar 

  • Kusmierczyk AR, Kunjappu MJ, Funakoshi M, Hochstrasser M (2008) A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol 15:237–244

    Article  PubMed  CAS  Google Scholar 

  • Leidhold C, Voos W (2007) Chaperones and proteases—guardians of protein integrity in eukaryotic organelles. Ann N Y Acad Sci 1113:72–86

    Article  PubMed  CAS  Google Scholar 

  • Le Tallec B, Barrault MB, Courbeyrette R, Guerois R, Marsolier-Kerqoat MC, Peyroche A (2007) 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell 27:660–674

    Article  PubMed  CAS  Google Scholar 

  • London MK, Keck BI, Ramos PC, Dohmen RJ (2004) Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett 567:259–264

    Article  PubMed  CAS  Google Scholar 

  • Major T, von Janowsky B, Ruppert T, Mogk A, Voos W (2006) Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease Pim1. Mol Cell Biol 26:762–776

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6:352–362

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Luehmann M, Spire-Jones TL, Prada C, Garcia-Alloza M, de Caligon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman H, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-1 and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  PubMed  CAS  Google Scholar 

  • Morcos M, Du X, Pfisterer F, Hutter H, Sayed AA, Thormalley P, Ahmed N, Baynes J, Thorpe S, Kukudov G, Schlotterer A, Bozorgmehr F, El Baki RA, Stern D, Moehrlen F, Hamann A, Becker C, Zeier M, Schwenger V, Miftari N, Humpert P, Hammes HP, Buechler M, Bierhaus A, Brownlee M, Nawroth PP (2008) Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in C. elegans. Aging Cell 7:260–269

    Article  PubMed  CAS  Google Scholar 

  • Naudi A, Caro P, Jove M, Gomez J, Boada J, Ayala V, Portero-Otin M, Barja G, Pamplona R (2007) Methionine restriction decreases endogenous oxidative molecular damage and increases mitochondrial biogenesis and uncoupling protein 4 in rat brain. Rejuv Res 10:1–11

    Article  Google Scholar 

  • Ngo JK, Davies KJ (2007) Importance of the lon protease in mitochondrial maintenance and the significance of declining lon in aging. Ann N Y Acad Sci 1119:78–87

    Article  PubMed  CAS  Google Scholar 

  • Otto H, Conz C, Maier P, Suzuki CK, Jeno P, Rucknagel P, Stahl J, Rospert S (2005) The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc Natl Acad Sci USA 102:100064–100069

    Article  CAS  Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    Article  PubMed  CAS  Google Scholar 

  • Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:1138–1152

    Article  CAS  Google Scholar 

  • Qian S-B, Princiotta MF, Bennink JR, Yewdell JW (2006) Characterization of rapidly degraded polypeptides in mammalian cells reveals a novel layer of nascent protein quality control. J Biol Chem 281:392–400

    Article  PubMed  CAS  Google Scholar 

  • Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 27:190–198

    Article  PubMed  CAS  Google Scholar 

  • Rakwalska M, Rospert S (2004) The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol Cell Biol 24:9186–9197

    Article  PubMed  CAS  Google Scholar 

  • Rattan SIS (2003) Transcriptional and translational dysregulation during aging. In: von Zglinicki T (ed) Aging at the molecular level. Kluwer, Dordrecht, pp 179–191

    Google Scholar 

  • Rattan SIS (2008) Increased molecular damage and heterogeneity as the basis of aging. Biol Chem 389:267–272

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    Article  PubMed  CAS  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1303–1307

    Google Scholar 

  • Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through PGC-1α and SIRT1 pathways. FEBS Lett 582:46–53

    Article  PubMed  CAS  Google Scholar 

  • Rosenberger RF, Carr AJ, Hipkiss AR (1990) Regulation of breakdown of canavanyl proteins in Escherichia coli by growth conditions in Lon+ and Lon cells. FEMS Microbiol Lett 68:19–25

    CAS  Google Scholar 

  • Roy H, Ling J, Alfonzo J, Ibba M (2005) Loss of editing activity during the evolution of mitochondria phenylalanyl-tRNA synthetase. J Biol Chem 280:38186–38192

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20:1064–1073

    Article  PubMed  CAS  Google Scholar 

  • Soh JW, Hotic S, Arking R (2007) Dietary restriction in Drosophila is dependent on mitochondrial efficiency and constrained by pre-existing extended longevity. Mech Ageing Dev 128:581–593

    Article  PubMed  CAS  Google Scholar 

  • Soskic V, Groebe K, Schrattenholz A (2007) Non-enzymic posttranslational protein modification in aging. Exp Gerontol 43:247–257

    Article  PubMed  CAS  Google Scholar 

  • Spence J, Gali RR, Dittmer G, Sherman F, Karin M, Finley D (2000) Cell cycle-regulated modification of the ribosome by a variant multi-ubiquitin chain. Cell 107:67–76

    Article  Google Scholar 

  • Stavreva DA, Kawasaki M, Dundr M, Koberna K, Muller WG, Tsujimura-Takahashi T, Komatsu W, Hayano T, Isobe T, Raska I, Misteli T, Takahashi N, McNally JG (2006) Potential roles for ubiquitin and the proteasome during ribosome biogenesis. Mol Cell Biol 26:5131–5145

    Article  PubMed  CAS  Google Scholar 

  • Syntichaki P, Troulinaki K, Tavernarakis N (2007) eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445:922–926

    Article  PubMed  CAS  Google Scholar 

  • Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314

    Article  PubMed  CAS  Google Scholar 

  • Vernace VA, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007a) Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J 21:2672–2682

    Article  PubMed  CAS  Google Scholar 

  • Vernace VA, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007b) Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 6:599–606

    Article  PubMed  CAS  Google Scholar 

  • von Janowsky B, Major T, Knapp K, Voos W (2006) The disaggregation activity of the mitochondrial ClpB homolog Hsp78 maintains Hsp70 function during heat stress. J Mol Biol 357:793–807

    Article  CAS  Google Scholar 

  • Voos W, Rottgers K (2002) Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta 1592:51–62

    Article  PubMed  CAS  Google Scholar 

  • Yashiroda H, Mizushima T, Okamto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirana Y, Murata S, Kato K, Yamane T, Tanaka K (2008) Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol 15:228–236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Hipkiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hipkiss, A.R. Error-protein metabolism and ageing. Biogerontology 10, 523–529 (2009). https://doi.org/10.1007/s10522-008-9188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9188-9

Keywords

Navigation