Skip to main content

Advertisement

Log in

Simple Sequence Repeats in the National Longitudinal Study of Adolescent Health: An Ethnically Diverse Resource for Genetic Analysis of Health and Behavior

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Simple sequence repeats (SSRs) are one of the earliest available forms of genetic variation available for analysis and have been utilized in studies of neurological, behavioral, and health phenotypes. Although findings from these studies have been suggestive, their interpretation has been complicated by a variety of factors including, among others, limited power due to small sample sizes. The current report details the availability, diversity, and allele and genotype frequencies of six commonly examined SSRs in the ethnically diverse, population-based National Longitudinal Study of Adolescent Health. A total of 106,743 genotypes were generated across 15,140 participants that included four microsatellites and two di-nucleotide repeats in three dopamine genes (DAT1, DRD4, DRD5), the serotonin transporter, and monoamine oxidase A. Allele and genotype frequencies showed a complex pattern and differed significantly between populations. For both di-nucleotide repeats we observed a greater allelic diversity than previously reported. The availability of these six SSRs in a large, ethnically diverse sample with extensive environmental measures assessed longitudinally offers a unique resource for researchers interested in health and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham JE, Maranian MJ, Spiteri I, Russell R, Ingle S, Luccrini C, Earl HM, Pharoh PPD, Dunning AM, Caldas C (2012) Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genom 5:19

    Article  Google Scholar 

  • Anchordoquy HC, McGeary C, Liu L, Krauter KS, Smolen A (2003) Genotyping of three candidate genes after whole-genome preamplification of DNA collected from buccal cells. Behav Genet 33:73–78

    Article  PubMed  Google Scholar 

  • Bhanglae TR, Rieder MJ, Livingston RJ, Nickerson DA (2005) Comprehensive identification and characterization of diallelic insertion–deletion polymorphisms in 330 human candidate genes. Hum Mol Genet 14(1):59–69

    Article  Google Scholar 

  • Black GCM, Chen ZY, Craig IW, Powell JF (1991) Dinucleotide repeat polymorphism at the MAOA locus. Nucleic Acids Res 19:689

    PubMed Central  PubMed  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  Google Scholar 

  • Chang FM, Kidd JR, Livak KJ, Pakstis AJ, Kidd KK (1996) The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus. Hum Genet 98:91–101

    Article  PubMed  Google Scholar 

  • Don RH, Cox RT, Wainwright BJ, Baker K, Mattick JS (1992) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  Google Scholar 

  • Durbin RM, Abecassis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation form population-scale sequencing. Nature 467:1061–107310

    Article  PubMed  Google Scholar 

  • Eichler EE (2006) Widening the spectrum of human genetic variation. Nat Genet 38(1):9–11

    Article  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  Google Scholar 

  • Fondon JW, Hammack EAD, Hannan AJ, King DG (2008) Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 31(7):328–334

    Article  PubMed  Google Scholar 

  • Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S (2001) The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenetics J 1:152–156

    Article  Google Scholar 

  • Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073

    Article  PubMed  Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T, Seldman M, Stollar BD (1984) Enhanced gene expression by the poly(dT-dG)-poly(dC-dA) sequence. Mol Cell Biol 4:2622–2630

    PubMed Central  PubMed  Google Scholar 

  • Harris KM (2012) Design features of Add Health. URL: www.cpc.unc.edu/projects/addhealth/guides/DesignPaperWIIV.pdf

  • Harris KM, Halpern CT, Smolen A, Haberstick BC (2006) The National Longitudinal Study of Adolescent Health (Add Health) twin data. Twin Res Hum Genet 9(6):988–997

    Article  PubMed  Google Scholar 

  • Harris KM, Halpern CT, Haberstick BC, Smolen A (2013) The National Longitudinal Study of Adolescent Health (Add Health) sibling pairs data. Twin Res Hum Genet 16(1):391–398

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu X, Oroszi G, Chun J, Smith TL, Goldman D, Schuckit MA (2005) An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin Exp Res 29:8–16

    Article  PubMed  Google Scholar 

  • Hu X, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, Xu K, Arnold PD, Richter MA, Kennedy JL, Murphy DL, Goldman D (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder. Am J Hum Genet 78:815–826

    Article  PubMed Central  PubMed  Google Scholar 

  • Koni AC, Scott RA, Wang G, Bailey ME, Peplies J, Bamann K, Pitsilladis YP, IDEFICS Consortium (2011) DNA yield and quality of saliva samples and suitability for large-scale epidemiological studies in children. Int J Obesity 35:S113–S118

    Article  Google Scholar 

  • Jeffreys AJ (1987) Highly variable minisatellite and DNA fingerprints. Biochem Soc Trans 15(3):309–317

    PubMed  Google Scholar 

  • Kang AM, Palmatier MA, Kidd KK (1999) Global variation of a 4-bp VNTR in the 3″-untranslated region of the dopamine transporter gene (SLC6A3). Bio Psychiatry 46:151–160

    Article  Google Scholar 

  • Kashi Y, King DG, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78

    Article  PubMed  Google Scholar 

  • King DG, Soller M, Kashi Y (1997) Evolutionary tuning knobs. Endeavour 21(1):36–40

    Article  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing of the human genome. Nature 409(6822):860–921

    Article  PubMed  Google Scholar 

  • McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, Dallaire S, Gabriel SB, Lee C, Daly MJ, Altshuler DM (2006) Common deletion polymorphisms in the human genome. Nat Genet 38:86–92

    Article  PubMed  Google Scholar 

  • Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard S, Devin SE (2006) An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16:1181–1190

    Article  Google Scholar 

  • Mills RE, Pittard WS, Mullaney JM, Farooq U, Creasy TH, Mahurkar Aa, Kemeza DM, Strassler DS, Ponting CP, Webber C, Devine SE (2011) Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res 21:830–910

    Article  PubMed Central  PubMed  Google Scholar 

  • Montgomery SB, Goode DL, Kvikstad E, Albers CA, Zhang ZD, Mu XJ, Ananda G, Howie B, Karczewski KJ, Smith KS, Anaya V, Richardson R, Davis J, 1000 Genomes Project Consortium, MacArthur DG, Sidow A, Luret L, Gerstein M, Makova KD, Marchini J, McVean G, Lunter G (2013) The origin, evolution, and functional impact of short insertion–deletion variants identified in 179 human genomes. Genome Res 23:749–761

    Article  PubMed Central  PubMed  Google Scholar 

  • Murdoch JD, Speed WC, Pakstis AJ, Heffelfinger CE, Kidd KK (2013) Worldwide population variation and haplotype analysis at the serotonin transporter gene SLC6A4 and implication for association studies. Biol Psychiat 74(12):879–889

  • Nakamura Y, Koyama Matsushima M (1998) VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators. J Hum Genet 43:149–152

    Article  PubMed  Google Scholar 

  • Nemoda Z, Horvat-Gordon M, Fortunato CK, Beltzer EK, Scholl JL, Granger DA (2011) Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples. BMC Res Methodol 11:170

    Article  Google Scholar 

  • Ng DPK, Koh D, Choo S, Chia KS (2006) Saliva as a viable alternative source of human genomic DNA in genetic epidemiology. Clin Chim Acta 367:82–85

    Article  Google Scholar 

  • Nunes AP, Oliveria IO, Santos BR, Millech C, Silva LP, Gonzalez DA, Hallal PC, Menezes AMB, Araujo CL, Barros FC (2012) Quality of DNA extracted from saliva samples collected with Oragene DNA self-collection. BMC Med Res Methodol 12:65

    Article  PubMed Central  PubMed  Google Scholar 

  • Pemberton TJ, Sandefur CI, Jakobsson M, Rosenberg NA (2009) Sequence determination of human microsatellite variability. BMC Genom 10:612

    Article  Google Scholar 

  • Pulford DJ, Mosteller M, Briley JD, Johansson KW, Nelsen AJ (2013) Saliva sampling in global clinical studies: the impact of low sampling volume on performance of DNA in downstream genotyping experiments. BMC Med Genet 6:20

    Google Scholar 

  • Quinque D, Kittler R, Kayser M, Stoneking M, Nasidze I (2006) Evaluation of saliva as a source of human DNA for population and association studies. Anal Biochem 353:272–277

    Article  PubMed  Google Scholar 

  • Rogers NL, Cole SA, Lan HC, Crossa A, Demerath EW (2007) New saliva DNA collection method compared to buccal cell collection techniques for epidemiological studies. Am J Hum Biol 19:319–326

    Article  PubMed Central  PubMed  Google Scholar 

  • Rylander-Rudqvist T, Hakansson N, Tybring G, Wolk A (2006) Quality and quantity of saliva DNA obtained from the self-administered Oragene method—A pilot study on the cohort or Swedish men. Cancer Epidemiol Biomarkers Prev 15:1742–1745

    Article  PubMed  Google Scholar 

  • Shen H, Li J, Zhang J, Xu C, Jiang Y, Wu Z, Zhao F, Liao L, Chen J, Lin Y, Tian Q, Papasian CJ, Deng HW (2013) Comprehensive characterization of human genome variation by high coverage whole-genome sequencing of forty four Caucasians. PLoS One 8(4):e59494

    Article  PubMed Central  PubMed  Google Scholar 

  • Sherrington R, Baljinder M, Attwood J, Kalsi G, Curtis D, Buetow K, Povey S, Gurling H (1993) Cloning of the human dopamine D5 receptor gene and identification of a highly polymorphic microsatellite for the DRD5 locus that shows tight linkage to the chromosome 4p reference marker RAF1P1. Genomics 18:423–425

    Article  PubMed  Google Scholar 

  • Smolen A, Whitsel EA, Tabor J, Killeya-Jones LA, Cuthbertson CC, Hussey JM, Halpern CT, Harris KM (2013) Add Health Wave IV documentation: Candidate Genes, 2013

  • Vanyukov MM, Moss HB, Yu LM, Deka R (1995) A dinucleotide repeat polymorphism at the gene for monoamine oxidase A and measures of aggressiveness. Psychiatry Res 59:35–41

    Article  PubMed  Google Scholar 

  • Weber JL, David D, Heil J, Fan Y, Zhao C, Marth G (2002) Human diallelic insertion/deletion polymorphisms. Am J Hum Genet 71:854–862

    Article  PubMed Central  PubMed  Google Scholar 

  • Wendland JR, Martin BJ, Kruse MR, Lesch KP, Murphy DL (2006) Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5HTTLPR and rs25531. Mol Psychiatry 11:224–226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgement is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (www.cpc.unc.edu/addhealth). No direct support was received from grant PO1-HD31921 for this analysis.

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all participants included in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett C. Haberstick.

Additional information

Edited by Stacey Cherny.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haberstick, B.C., Smolen, A., Stetler, G.L. et al. Simple Sequence Repeats in the National Longitudinal Study of Adolescent Health: An Ethnically Diverse Resource for Genetic Analysis of Health and Behavior. Behav Genet 44, 487–497 (2014). https://doi.org/10.1007/s10519-014-9662-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-014-9662-x

Keywords

Navigation