Skip to main content
Log in

Genetic Mapping of Vocalization to a Series of Increasing Acute Footshocks Using B6.A Consomic and B6.D2 Congenic Mouse Strains

  • Original Paper
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Footshock response is used to study a variety of biological functions in mammals including drug self-administration, learning and memory and nociception. However, the genetics underlying variability in footshock sensitivity are not well understood. In the current studies, a panel of B6.A consomic mouse strains, two B6.D2 genome-tagged mouse lines, and the progenitor strains were screened for footshock sensitivity as measured by audible vocalization. It was found that A/J (A) mice and C57BL/6J (B6) mice with an A Chromosome 1 (Chr 1) were less sensitive to footshock compared to B6 animals. Furthermore, the offspring of Chr 1 consomic mice crossed with B6 mice had vocalization levels that were intermediate to A/J and B6 animals. A F2 mapping panel revealed two significant QTLs for footshock vocalization centered around D1Mit490 and D1Mit206 on Chr 1. The role of these Chr 1 loci in footshock sensitivity was confirmed in B6.D2 genome-tagged mouse lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl QTL mapping in experimental crosses. Bioinformatics 19:889–890. doi:10.1093/bioinformatics/btg112

    Article  PubMed  CAS  Google Scholar 

  • Brown SA, Vik PW, Patterson TL, Grant I, Schuckit MA (1995) Stress, vulnerability and adult alcohol relapse. J Stud Alcohol 56:538–545

    PubMed  CAS  Google Scholar 

  • Carran AB, Yeudall LT, Royce JR (1964) Voltage level and skin resistance in avoidance conditioning of inbred strains of mice. J Comp Physiol Psychol 58:427–430. doi:10.1037/h0046774

    Article  PubMed  CAS  Google Scholar 

  • Coburn CA (1922) Heredity of wildness and savageness in mice. Behav Monog 4:1–71

    Google Scholar 

  • Conger JL (1956) Alcoholism: theory, problem and challenge. II. Reinforcement theory and the dynamics of alcoholism. Q J Stud Alcohol 17:296–305

    PubMed  CAS  Google Scholar 

  • Cooper ML, Russell M, Skinner JB, Frone MR, Mudar P (1992) Stress and alcohol use: moderating effects of gender, coping, and alcohol expectancies. J Abnorm Psychol 101:139–152. doi:10.1037/0021-843X.101.1.139

    Article  PubMed  CAS  Google Scholar 

  • Davis RC, Schadt EE, Smith DJ, Hsieh EW, Cervino AC, van Nas A et al (2005) A genome-wide set of congenic mouse strains derived from DBA/2J on a C57BL/6J background. Genomics 86:259–270. doi:10.1016/j.ygeno.2005.05.010

    Article  PubMed  CAS  Google Scholar 

  • Dawson DA, Grant BF, Ruan WJ (2005) The association between stress and drinking: modifying effects of gender and vulnerability. Alcohol Alcoholism 40:453–460. doi:10.1093/alcalc/agh176

    Article  Google Scholar 

  • Dawson DA, Grant BF, Li TK (2007) Impact of age of first drink on stress-reactive drinking. Alcohol Clin Exp Res 31:69–77. doi:10.1111/j.1530-0277.2006.00265.x

    Article  PubMed  Google Scholar 

  • de Quervain DJ, Roozendaal B, McGaugh JL (1998) Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394:787–790. doi:10.1038/29542

    Article  PubMed  CAS  Google Scholar 

  • Fehr C, Shirley RL, Crabbe JC, Belknap JK, Buck KJ, Phillips TJ (2005) The syntaxin binding protein 1 gene (Stxbp1) is a candidate for an ethanol preference drinking locus on mouse chromosome 2. Alcohol Clin Exp Res 29:708–720. doi:10.1097/01.ALC.0000164366.18376.EF

    Article  PubMed  CAS  Google Scholar 

  • Goeders NE (2003) The impact of stress on addiction. Eur Neuropsychopharmacol 13:435–441. doi:10.1016/j.euroneuro.2003.08.004

    Article  PubMed  CAS  Google Scholar 

  • Harbuz MS, Chover-Gonzalez A, Gibert-Rahola J, Jessop DS (2002) Protective effect of prior acute immune challenge, but not footshock, on inflammation in the rat. Brain Behav Immun 16:439–449. doi:10.1006/brbi.2001.0658

    Article  PubMed  CAS  Google Scholar 

  • Iakoubova OA, Olsson CL, Dains KM, Ross DA, Andalibi A, Lau K et al (2001) Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genomics 74:89–104. doi:10.1006/geno.2000.6497

    Article  PubMed  CAS  Google Scholar 

  • Le AD, Poulos CX, Harding S, Watchus J, Juzytsch W, Shaham Y (1999) Effects of naltrexone and fluoxetine on alcohol self-administration and reinstatement of alcohol seeking induced by priming injections of alcohol and exposure to stress. Neuropsychopharmacology 21:435–444. doi:10.1016/S0893-133X(99)00024-X

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Weiss F (2002) Additive effect of stress and drug cues on reinstatement of ethanol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. J Neurosci 15:7856–7861

    Google Scholar 

  • Martin-Fardon R, Ciccocioppo R, Massi M, Weiss F (2000) Nociceptin prevents stress-induced ethanol-but not cocaine-seeking behavior in rats. Neuroreport 11:1939–1943

    Article  PubMed  CAS  Google Scholar 

  • Matthews DB, Morrow AL, O’Buckley T, Berry RB, Mittleman G, Goldowitz D et al. The effect of acute mild footshock on ethanol self-administration and plasma corticosterone levels in three commonly used mouse strains. Alcohol (in press)

  • Mori T, Makino J (1994) Response types to shock and avoidance learning in inbred strains of mice. Shinrigaku Kenkyu 4:285–302

    Google Scholar 

  • Reeves RH, Crowley MR, Lorenzon N, Pavan WJ, Smeyne RJ, Goldowitz D (1989) The mouse neurological mutant weaver maps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics 5:522–526. doi:10.1016/0888-7543(89)90018-9

    Article  PubMed  CAS  Google Scholar 

  • Roberts LE (1967) Central, peripheral and artifactual determinats of skin resistance in the mouse. J Comp Physiol Psychol 64:318–328. doi:10.1037/h0024805

    Article  PubMed  CAS  Google Scholar 

  • Santos J, Montagutelli X, Acevedo A, Lopez P, Vaquero C, Fernandez M et al (2002) A new locus for resistance to gamma-radiation-induced thymic lymphoma identified using inter-specific consomic and inter-specific recombinant congenic strains of mice. Oncogene 21:6680–6683. doi:10.1038/sj.onc.1205846

    Article  PubMed  CAS  Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M et al (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448. doi:10.1126/science.1093139

    Article  PubMed  CAS  Google Scholar 

  • Swedberg MD (1994) The mouse grid-shock analgesia test: pharmacological characterization of latency to vocalization threshold as an index of antinociception. J Pharmacol Exp Ther 269:1021–1028

    PubMed  CAS  Google Scholar 

  • Vengeliene V, Siegmund S, Singer MV, Sinclair JD, Li TK, Spanagel R (2003) A comparative study on alcohol-preferring rat lines: effects of deprivation and stress phases on voluntary alcohol intake. Alcohol Clin Exp Res 27:1048–1054. doi:10.1097/01.ALC.0000075829.81211.0C

    Article  PubMed  Google Scholar 

  • Volpicelli JR (1987) Uncontrollable events and alcohol drinking. Br J Addict 82:381–392. doi:10.1111/j.1360-0443.1987.tb01494.x

    Article  PubMed  CAS  Google Scholar 

  • Wahlsten D (1972) Phenotypic and genetic relations between initial response to electric shock and rate of avoidance learning in mice. Behav Genet 2:211–240. doi:10.1007/BF01065691

    Article  PubMed  CAS  Google Scholar 

  • Weller CP, Sulman FG (1970) Drug action on tail shock-induced vocalization in mice and its relevance to analgesia. Eur J Pharmacol 9:227–234. doi:10.1016/0014-2999(70)90304-3

    Article  PubMed  CAS  Google Scholar 

  • Whitney GD (1969) Vocalization of mice: a single genetic unit effect. J Hered 60:337–340

    PubMed  CAS  Google Scholar 

  • Whitney GD (1973) Vocalization of mice influenced by a single gene in a heterogeneous population. Behav Genet 3:57–64. doi:10.1007/BF01067689

    Article  PubMed  CAS  Google Scholar 

  • Yingling J, Toyo-Oka K, Wynshaw-Boris A (2003) Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am J Hum Genet 73:475–488. doi:10.1086/378096

    Article  PubMed  CAS  Google Scholar 

  • Zerbollo DJ (1967) Differences between three inbred mouse strains on a wheel-turn avoidance task. Psychon Sci 7:201–202

    Google Scholar 

Download references

Acknowledgments

This manuscript was supported by the following grants: NIMH grant MH61971, R25 MH-066890, U01-AA-13503, AA014588, AA13509, DA020677, and AA016662 to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Matthews.

Additional information

Edited by Pierre Roubertoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, D.B., Chesler, E.J., Cook, M.N. et al. Genetic Mapping of Vocalization to a Series of Increasing Acute Footshocks Using B6.A Consomic and B6.D2 Congenic Mouse Strains. Behav Genet 38, 417–423 (2008). https://doi.org/10.1007/s10519-008-9210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-008-9210-7

Keywords

Navigation