Skip to main content
Log in

A geolithological approach to seismic site classification: an application to the Molise Region (Italy)

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

Seismic site classification is a critical issue in order to reliably predict seismic ground motion parameters for the development of microzonation maps and site-specific hazard studies, addressed to territorial planning, real-time generation of shaking maps, and seismic design of engineering structures. The equivalent shear wave velocity through the topmost 30 m (VS30) is commonly assumed as the reference parameter to provide practical site classifications. Different approaches aimed at expressing local site conditions in terms of VS30 exist. Overall geological and morphological characteristics are often suggested in the technical literature as proxy to infer VS30 at a regional scale. In this study, the reliability of two commonly accepted approaches based either on the topographic slope proxy or on a basic geological classification was assessed with reference to a well-documented case study, the Molise Region (Italy). A comprehensive database of Down-Hole tests was collected, validated and processed in order to compare measured VS30 values with those inferred from proxy-based approaches. Furthermore, an up-to-date review of the geology of the area was carried out, and a novel methodology based on a geolithological approach was proposed for site classification at a regional scale. The methodology is based on the definition of a set of homogeneous geolithological complexes, and on their classification according to a statistical analysis of the measured VS30 and of the bedrock depth. Original maps of the seismic ground types were developed following classification criteria based upon the European building code for seismic design (EC8) and relevant modifications proposed in the literature. The comparison of the results obtained by the geolithological approach versus those deriving from the application of the above mentioned proxies pointed out an enhanced capability of the proposed method to fit the distribution of ground types, as assessed on the basis of the VS30 values measured in the reference area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abrahamson NA, Silva WJ, Kamai R (2014) Summary of the ASK14 ground motion relation for active crustal regions. Earthq Spectra 30(3):1025–1055

    Article  Google Scholar 

  • Akkar S, Sandıkkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12(1):359–387

    Article  Google Scholar 

  • Allen TI, Wald DJ (2007) Topographic slope as a proxy for global seismic site conditions (VS30) and amplification around the globe. U.S. Geological Survey Open-File Report, 2007-1357, 69 pp

  • Allen TI, Wald DJ (2009) On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bull Seismol Soc Am 99(2A):935–943

    Article  Google Scholar 

  • Anbazhagan P, Sheikh M, Parihar A (2013) Influence of rock depth on seismic site classification for shallow bedrock regions. Nat Hazards Rev 14(2):108–121

    Article  Google Scholar 

  • Ansal A, Kurtuluş A, Tönük G (2011) Seismic microzonation and earthquake damage scenarios for urban areas. Soil Dyn Earthq Eng 30(11):1319–1328

    Article  Google Scholar 

  • ASTM D7400-07 (2007) Standard test methods for downhole seismic testing. ASTM International, West Conshohocken

  • Bindi D, Massa M, Luzi L, Ameri G, Pacor F, Puglia R, Augliera P (2014) Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset. Bull Earthq Eng 12(1):391–430

    Article  Google Scholar 

  • Boore DM, Stewart JP, Seyhan E, Atkinson GM (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq Spectra 30(3):1057–1085

    Article  Google Scholar 

  • Borcherdt RD (1994) Estimates of site-dependent response spectra for design (methodology and justification). Earthq Spectra 10(4):617–654

    Article  Google Scholar 

  • Bouckovalas G, Papadimitriou A, Karamitros D (2006). Compatibility of EC-8 ground types and site effects with 1-D wave propagation theory. Workshop of ETC12 Evaluation Committee for the Application of EC8, Athens, January 20–21

  • BSSC, Building Seismic Safety Council (2001) NEHRP recommended provisions for seismic regulations for new buildings and other structures, FEMA 368, Part 1, (Provisions): developed for the Federal Emergency Management Agency, Washington, DC

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthq Spectra 30(3):1087–1115

    Article  Google Scholar 

  • Cantore L, Convertito V, Zollo A (2010) Development of a site-conditions map for the Campania–Lucania region (southern Apennines, Italy). Ann Geophys 53(4):27–37

    Google Scholar 

  • Castellaro S, Mulargia F, Rossi PM (2008) VS30: proxy for seismic amplification. Seismol Res Lett 79:540–543

    Article  Google Scholar 

  • Cavallaro A, Grasso S, Maugeri M (2006) Site characterization at the Catania city, Italy. Workshop of ETC12 Evaluation Committee for the Application of EC8, Athens, January 20–21

  • Cello G, Mazzoli S (1999) Apennine tectonics in Southern Italy: a review. Geodynamics 27:191–211

    Article  Google Scholar 

  • Chiou BSJ, Youngs RR (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 30(3):1117–1153

    Article  Google Scholar 

  • Chiou BS-J, Darragh R, Dregor D, Silva WJ (2008) NGA project strong-motion database. Earthq Spectra 24(1):23–44

    Article  Google Scholar 

  • Choi Y, Stewart JP (2005) Nonlinear site amplification as function of 30 m shear wave velocity. Earthq Spectra 21(1):1–30

    Article  Google Scholar 

  • Consiglio Superiore dei Lavori Pubblici (2008) NTC 2008—Nuove Norme Tecniche per le Costruzioni. D.M. Infrastrutture 14/01/08, S.O. n. 30 at the G.U. 04/02/2008 n. 29 (in Italian)

  • Costanzo A, d’Onofrio A, Lanzo G, Pagliaroli A, Penna A, Puglia R, Santucci de Magistris F, Sica S, Silvestri F, Tommasi P (2007). Seismic response of historical centers in Italy: selected case studies. In: Proceedings of workshop on geotechnical earthquake engineering related to monuments and historical centers, IV ICEGE, Thessaloniki. Springer, Dordrecht

  • Cox BR, Bachhuber J, Rathje E, Wood CM, Dulberg R, Kottke A, Green RA, Olson SM (2011) Shear wave velocity- and geology-based seismic microzonation of Port-au-Prince, Haiti. Earthq Spectra 27(S1):S67–S92

    Article  Google Scholar 

  • d’Onofrio A, Vitone C, Cotecchia F, Puglia R, Santucci de Magistris F, Silvestri F (2009) Caratterizzazione geotecnica del sottosuolo di San Giuliano di Puglia. Rivista Italiana di Geotecnica 43(3):43–61 (in Italian)

    Google Scholar 

  • Derras B, Bard P-Y, Cotton F (2014) Towards fully data driven ground-motion prediction models for Europe. Bull Earthq Eng 12(1):495–516

    Article  Google Scholar 

  • Di Carluccio A, Fabbrocino G, Fabbrocino S, Santucci de Magistris F, Todisco F (2009) Approccio metodologico alla valutazione di vulnerabilità per infrastrutture distribuite: aspetti geologici e geotecnici. Anidis XIII, L’ingegneria sismica in Italia, Bologna 28 Giugno-2 Luglio (in Italian)

  • DISS Working Group (2010) Database of individual seismogenic sources (DISS), Version 3.1.1: a compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, © INGV 2010—Istituto Nazionale di Geofisica e Vulcanologia. All rights reserved; doi:10.6092/ingv.it-diss3.1.1

  • EN 1998-1 (2005) Eurocode 8: design of structures for earthquake resistance—Part 1: general rules, seismic actions and rules for buildings. CEN European Committee for Standardization, Bruxelles

  • Evangelista L, Fabbrocino S, Lanzano G, Todisco F, Santucci de Magistris F, Fabbrocino G (2011) Integrated geotechnical characterization of distributed sites in the Molise Region (Italy) for seismic vulnerability analysis. In: 5ICEGE 5th international conference on earthquake geotechnical engineering, January 2011, Santiago, Chile

  • Fabbrocino S, Paduano P, Lanzano G, Forte G, Santucci de Magistris F, Fabbrocino G (2014) Modellazione geologica e geotecnica ottimizzata nelle analisi Na-Tech degli insediamenti industriali. In: Proceedings of XXV: Convegno Nazionale di Geotecnica—La geotecnica nella difesa del territorio e delle infrastrutture dai rischi naturali Baveno, (VB), Italy (in Italian)

  • Fabbrocino S, Lanzano G, Forte G, Santucci de Magistris F, Fabbrocino G (2015) SPT blow count vs shear waves velocity relationship in the structurally complex formations of the Molise Region. Eng Geol 187:84–97

    Article  Google Scholar 

  • Fabbrocino S, Paduano P, Lanzano G, Forte G, Santucci de Magistris F, Fabbrocino G (2016) Engineering geology model for seismic vulnerability assessment of critical infrastructures. In: Developments in engineering geology. Engineering Geology Special Publications, The Geological Society (GSL), London (in press)

  • Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. EOS Trans Am Geophys Union 81(48):583–585

    Article  Google Scholar 

  • Forte G (2014) Integrated approach to the analysis of earthquake triggered landslides and their impact on roadway infrastructures. Ph. D. Thesis XXVI cycle, University of Naples Federico II

  • Forte G, Fabbrocino S, Santucci de Magistris F, Silvestri F (2013) Seismic permanent ground deformations: Earthquake triggered landslides in the Molise Apennines. Rend Online Soc Geol Ital 24:134–136

    Google Scholar 

  • Forte G, Fabbrocino S, Santucci de Magistris F, Silvestri F, Fabbrocino G (2015) Earthquake triggered landslides: the case study of a roadway network in Molise Region (Italy). In: Engineering Geology for Society and Territory, Volume 2: Landslide Processes, pp 765–768

  • IBC International Building Code (2015) International Code Council ISBN-13: 978-1609834685

  • Idriss IM (2011) Use of VS30 to represent local site conditions. In: 4th IASPEI/IAEE international symposium: effects of surface geology on strong ground-motion—VS30 workshop. 23–26 August 2011, University of California, Santa Barbara

  • Idriss IM (2014) An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthq Spectra 30(3):1155–1177

    Article  Google Scholar 

  • ISSMGE (1999) Manual for zonation on seismic geotechnical hazards (revised version). Technical Committee for Earthquake Geotechnical Engineering, TC4, International Society for Soil Mechanics and Geotechnical Engineering. The Japanese Geotechnical Society, Tokyo

  • Iwahashi J, Kamiya I, Matsuoka M (2010) Regression analysis of VS30 using topographic attributes from a 50-m DEM. Geomorphology 117:202–205

    Article  Google Scholar 

  • Lee C, Tsai B (2008) Mapping VS30 in Taiwan. Terr Atmos Ocean Sci 19(6):671–682

    Article  Google Scholar 

  • Lemoine A, Douglas J, Cotton F (2012) Testing the applicability of correlations between topographic slope and VS30 for Europe. Bull Seismol Soc Am 102(6):2585–2599

    Article  Google Scholar 

  • Luzi L, Meroni F (2007) Task 1—completamento delle elaborazioni relative a MPS04. Deliverable D6: Valutazioni sperimentali di amax e di spettri di risposta calibrate per le condizioni locali, Convenzione INGV-DPC 2004–2006/Progetto S1, Milano, 4 aprile 2007, 27 pp. http://esse1.mi.ingv.it/data/D6.pdf

  • McPherson A, Hall L (2013) Site classification for earthquake hazard and risk assessment in Australia. Bull Seismol Soc Am 103(2A):1085–1102

    Article  Google Scholar 

  • Michelini A, Faenza L, Lauciani V, Malagnini L (2008) ShakeMap implementation in Italy. Seismol Res Lett 79(5):688–697

    Article  Google Scholar 

  • Mostardini F, Merlini S (1986) L’Appennino centro-meridionale Sezioni geologiche e proposta di modello strutturale. Mem Soc Geol Ital 35:177–202 (in Italian)

    Google Scholar 

  • Patacca E, Scandone P (2007) Geology of southern Apennines. Boll Soc. Geol Ital (Ital J Geosci). Special Issue No. 7 (2007), pp 75–119

  • Pitilakis K, Gazepis C, Anastasiadis A (2006) Design response spectra and soil classification for seismic code provisions. Workshop of ETC12 Evaluation Committee for the Application of EC8, Athens, January 20–21

  • Pitilakis K, Riga E, Anastasiadis A (2012) Design spectra and amplification factors for Eurocode 8. Bull Earthq Eng 10:1377–1400

    Article  Google Scholar 

  • Pitilakis K, Riga E, Anastasiadis A (2013) New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database. Bull Earthq Eng 11:925–966

    Article  Google Scholar 

  • Puglia R, Vona M, Klin P, Ladina C, Masi A, Priolo E, Silvestri F (2013) Analysis of site response and building damage distribution induced by the 31 October 2002 earthquake at San Giuliano di Puglia (Italy). Earthq Spectra 29(2):497–526

    Article  Google Scholar 

  • Rosskopf CM, Aucelli PPC (2007) Analisi del dissesto da frana in Molise. In: Trigila A (ed) Rapporto sulle frane in Italia. Il Progetto IFFI—Metodologia, risultati e rapporti Regionali. APAT, rapporti 78, pp 493–508 (in Italian)

  • Santucci de Magistris F, Lanzano G, Forte G, Fabbrocino G (2014) A peak acceleration threshold for soil liquefaction: lessons learned from the 2012 Emilia earthquake (Italy). Nat Hazards 74(2):1069–1094

    Article  Google Scholar 

  • Seyhan E, Stewart JP (2014) Semi-empirical nonlinear site amplification from NGA-West2 data and simulations. Earthq Spectra 30:1241–1256

    Article  Google Scholar 

  • Thompson EM, Wald DJ (2012) Developing VS30 site-condition maps by combining observations with geologic and topographic constraints. In: 15th world conference on earthquake engineering, Lisbon, Portugal, 24–28 September

  • Thompson EM, Wald DJ, Worden CB (2014) A VS30 map for California with geologic and topographic constraints. Bull Seismol Soc Am 104(5):2313–2321

    Article  Google Scholar 

  • Wills C, Clahan K (2006) Developing a map of geologically defined site-condition categories for California. Bull Seismol Soc Am 96(4A):1483–1501

    Article  Google Scholar 

  • Yong A, Hough S, Iwahashi J, Braverman A (2012) A terrain-based site-conditions map of California with implications for the contiguous United States. Bull Seismol Soc Am 102(1):114–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Forte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forte, G., Fabbrocino, S., Fabbrocino, G. et al. A geolithological approach to seismic site classification: an application to the Molise Region (Italy). Bull Earthquake Eng 15, 175–198 (2017). https://doi.org/10.1007/s10518-016-9960-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-9960-1

Keywords

Navigation