Skip to main content
Log in

DNA Vaccine Encoding the Artificial T-Cell Polyepitope Immunogen of Tick-Borne Encephalitis Virus

  • VIROLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

A promising approach to the development of new means for preventing infection caused by tick-borne encephalitis virus can be DNA vaccines encoding polyepitope T-cell immunogens. A DNA vaccine pVAX-AG4-ub encoding an artificial polyepitope immunogen that includes cytotoxic and T-helper epitopes from the NS1, NS3, NS5, and E proteins of the tick-borne encephalitis virus has been obtained. The developed construct ensured the synthesis of the corresponding mRNAs in transfected eukaryotic cells. Immunization of mice with pVAX-AG4-ub induced the formation of a virus-specific T-cell response providing 50% protection from lethal infection with the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erber W, Schmitt HJ, Janković TV. Epidemiology by country — an overview. The TBE Book. Dobler H, Erber W, eds. Singapore, 2020. P. 159-170.

  2. Evolution of Tick-Borne Encephalitis (from the Discovery of the Pathogen to the Present Time). Pogodina VV, Ishmukhametova AA, eds. Tver, 2021. Russian.

  3. Kollaritsch H, Paulke-Korinek M, Holzmann H, Hombach J, Bjorvatn B, Barrett A. Vaccines and vaccination against tick-borne encephalitis. Expert Rev. Vaccines. 2012;11(9):1103-1119. doi: https://doi.org/10.1586/erv.12.86

    Article  PubMed  CAS  Google Scholar 

  4. Xing Y, Schmitt HJ, Arguedas A, Yang J. Tick-borne encephalitis in China: A review of epidemiology and vaccines. Vaccine. 2017;35(9):1227-1237. doi: https://doi.org/10.1016/j.vaccine.2017.01.015

    Article  PubMed  Google Scholar 

  5. Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-borne encephalitis virus: a quest for better vaccines against a virus on the rise. Vaccines (Basel). 2020;8(3):451. doi: https://doi.org/10.3390/vaccines8030451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Antonets DV, Maksiutov AZ. TEpredict: software for T-cell epitope prediction. Mol. Biol. (Mosk). 2010;44(1):130-139.

    Article  PubMed  CAS  Google Scholar 

  7. Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020;48(W1):W449-W454. doi: https://doi.org/10.1093/nar/gkaa379

  8. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):D339-D343. doi: https://doi.org/10.1093/nar/gky1006

    Article  PubMed  CAS  Google Scholar 

  9. Bazhan SI, Antonets DV, Karpenko LI, Oreshkova SF, Kaplina ON, Starostina EV, Dudko SG, Fedotova SA, Ilyichev AA. In silico designed Ebola virus t-cell multi-epitope DNA vaccine constructions are immunogenic in mice. Vaccines (Basel). 2019;7(2):34. doi: https://doi.org/10.3390/vaccines7020034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bazhan SI, Antonets DV, Starostina EV, Ilyicheva TN, Kaplina ON, Marchenko VY, Volkova OY, Bakulina AY, Karpenko LI. In silico design of influenza a virus artificial epitope-based T-cell antigens and the evaluation of their immunogenicity in mice. J. Biomol. Struct. Dyn. 2022;40(7):3196-3212. doi: https://doi.org/10.1080/07391102.2020.1845978

    Article  PubMed  CAS  Google Scholar 

  11. Antonets DV, Bazhan SI. PolyCTLDesigner: a computational tool for constructing polyepitope T-cell antigens. BMC Res. Notes. 2013;6:407. doi: https://doi.org/10.1186/1756-0500-6-407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33(Web Server issue):W526-W531. doi: https://doi.org/10.1093/nar/gki376

  13. Borgoyakova MB, Karpenko LI, Rudometov AP, Shanshin DV, Isaeva AA, Nesmeyanova VS, Volkova NV, Belenkaya SV, Murashkin DE, Shcherbakov DN, Volosnikova EA, Starostina EV, Orlova LA, Danilchenko NV, Zaikovskaya AV, Pyankov OV, Ilyichev AA. Immunogenic properties of the DNA construct encoding the receptor-binding domain of the SARS-CoV-2 spike protein. Mol. Biol. 2021;55(6):889-898. doi: https://doi.org/10.1134/S0026893321050046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kisakov DN, Kisakova LA, Borgoyakova MB, Starostina EV, Taranov OS, Ivleva EK, Pyankov OV, Zaykovskaya AV, Shcherbakov DN, Rudometov AP, Rudometova NB, Volkova NV, Gureev VN, Ilyichev AA, Karpenko LI. Optimization of in vivo electroporation conditions and delivery of DNA vaccine encoding SARS-CoV-2 RBD using the determined protocol. Pharmaceutics. 2022;14(11):2259. doi: https://doi.org/10.3390/pharmaceutics14112259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Borgoyakova MB, Karpenko LI, Rudometov AP, Volosnikova EA, Merkuleva IA, Starostina EV, Zadorozhny AM, Isaeva AA, Nesmeyanova VS, Shanshin DV, Baranov KO, Volkova NV, Zaitsev BN, Orlova LA, Zaykovskaya AV, Pyankov OV, Danilenko ED, Bazhan SI, Shcherbakov DN, Taranin AV, Ilyichev AA. Self-assembled particles combining SARS-CoV-2 RBD protein and RBD DNA vaccine induce synergistic enhancement of the humoral response in mice. Int. J. Mol. Sci. 2022;23(4):2188. doi: https://doi.org/10.3390/ijms23042188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Kisakov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 176, No. 7, pp. 85-89, July, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisakov, D.N., Antonets, D.V., Shaburova, E.V. et al. DNA Vaccine Encoding the Artificial T-Cell Polyepitope Immunogen of Tick-Borne Encephalitis Virus. Bull Exp Biol Med 176, 72–76 (2023). https://doi.org/10.1007/s10517-023-05970-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05970-4

Keywords

Navigation