Skip to main content
Log in

Genotyping of Macaque Population on the Brain-Derived Neurotrophic Factor Gene Polymorphism by Mismatch Amplification Mutation Assay (MAMA)-PCR

  • PRIMATOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Human rs6265 (196G>A) polymorphism in the BDNF gene is associated with many clinically significant phenotypic manifestations. Rhesus monkey (Macaca mulatta) has a functionally significant rs309950446 ( 136G>A) polymorphism. To determine this polymorphism in macaques, we used mismatch amplification mutation assay (MAMA)-PCR method with non-complementary nucleotide to the template chain at the 3rd position from the 3’-end of the allele-specific primers (mismatch primers), which allowed the best discrimination of the alleles. Genotyping of male rhesus monkeys (n=178) and cynomolgus monkeys (Macaca fascicularis) (n=90) was carried out. The A/A, G/G, and G/A genotypes were found in 16, 34, and 50% rhesus macaques, respectively. In the cynomolgus macaques, the mutant polymorphic allele was not detected. The study results allow considering rhesus macaques as a potential biological model for assessment of the gen—environment interaction of the BDNF gene polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Ann. Rev. Neurosci. 2001;24:677-736. doi: https://doi.org/10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  Google Scholar 

  2. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 2001;21(17):6706-6717. doi: https://doi.org/10.1523/JNEUROSCI.21-17-06706.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iu ECY, Chan CB. Is Brain-Derived Neurotrophic Factor a metabolic hormone in peripheral tissues? Biology (Basel). 2022;11(7):1063. doi: https://doi.org/10.3390/biology11071063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baj G, Carlino D, Gardossi L, Tongiorgi E. Toward a unified biological hypothesis for the BDNF Val66Met-associated memory deficits in humans: a model of impaired dendritic mRNA trafficking. Front. Neurosci. 2013;7:188. doi: https://doi.org/10.3389/fnins.2013.00188

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH. BDNF is essential to promote persistence of long-term memory storage. Proc. Natl Acad. Sci. USA. 2008;105(7):2711-2716. doi: https://doi.org/10.1073/pnas.0711863105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Youssef MM, Underwood MD, Huang YY, Hsiung SC, Liu Y, Simpson NR, Bakalian MJ, Rosoklija GB, Dwork AJ, Arango V, Mann JJ. Association of BDNF Val66Met polymorphism and brain BDNF Levels with major depression and suicide. Int. J. Neuropsychopharmacol. 2018;21(6):528-538. doi: https://doi.org/10.1093/ijnp/pyy008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borroni B, Archetti S, Costanzi C, Grassi M, Ferrari M, Radeghieri A, Caimi L, Caltagirone C, Di Luca M, Padovani A; ITINAD Working Group. Role of BDNF Val66Met functional polymorphism in Alzheimer’s disease-related depression. Neurobiol. Aging. 2009;30(9):1406-1412. doi: https://doi.org/10.1016/j.neurobiolaging.2007.11.023

  8. Dincheva I, Lynch NB, Lee FS. The role of BDNF in the development of fear learning. Depress Anxiety. 2016;33(10):907-916. doi: https://doi.org/10.1002/da.22497

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sanchez MM, Das D, Taylor JL, Noda A, Yesavage JA, Salehi A. BDNF polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals. Transl. Psychiatry. 2011;1(10):e51. doi: https://doi.org/10.1038/tp.2011.47.

  10. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. BDNFbased synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 2013;14(6):401-416. doi: https://doi.org/10.1038/nrn3505

    Article  CAS  PubMed  Google Scholar 

  11. Verhagen M, van der Meij A, van Deurzen PA, Janzing JG, Arias-Vásquez A, Buitelaar JK, Franke B. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Mol. Psychiatry. 2010;15(3):260-271. doi: https://doi.org/10.1038/mp.2008.109

    Article  CAS  PubMed  Google Scholar 

  12. Cirulli F, Reif A, Herterich S, Lesch KP, Berry A, Francia N, Aloe L, Barr CS, Suomi SJ, Alleva E. A novel BDNF polymorphism affects plasma protein levels in interaction with early adversity in rhesus macaques. Psychoneuroendocrinology. 2011;36(3):372-379. doi: https://doi.org/10.1016/j.psyneuen.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  13. Pavlova LE, Panchenko AlV, Timina MF, Gvozdik TE, Kovalenko VV, Agumava AA, Panchenko AV. Genetic homogeneity of the population of male rhesus macaques by the polymorphisms of genes oprm1, npy, maoa, crh, 5-htt as determined by cluster analysis of blood count data. Russ. J. Genet. 2022;58(4):420-427. doi: https://doi.org/10.1134/S1022795422030097

  14. Deekshit VK, Jazeela K, Chakraborty G, Rohit A, Chakraborty A, Karunasaga I. Mismatch amplification mutation assay-polymerase chain reaction: A method of detecting fluoroquinolone resistance mechanism in bacterial pathogens. Indian J. Med. Res. 2019;149(2):146-150. doi: https://doi.org/10.4103/ijmr.IJMR_2091_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Terracciano A, Piras MG, Lobina M, Mulas A, Meirelles O, Sutin AR, Chan W, Sanna S, Uda M, Crisponi L, Schlessinger D. Genetics of serum BDNF: meta-analysis of the Val66Met and genome-wide association study. World J. Biol. Psychiatry. 2013;14(8):583-589. doi: https://doi.org/10.3109/15622975.2011.616533

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Pavlova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 175, No. 3, pp. 374-378, March, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, L.E., Timina, M.F., Agumava, A.A. et al. Genotyping of Macaque Population on the Brain-Derived Neurotrophic Factor Gene Polymorphism by Mismatch Amplification Mutation Assay (MAMA)-PCR. Bull Exp Biol Med 175, 388–392 (2023). https://doi.org/10.1007/s10517-023-05873-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05873-4

Keywords

Navigation