Skip to main content
Log in

Growth-Stimulating Effect of Platelet Preparations Obtained by Different Methods on Human Fibroblast Culture

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the growth-stimulating effect of platelet-based preparations obtained by different methods on cultured human fibroblasts M-22. Platelet lysates prepared from platelet-rich plasma, platelet-poor plasma, concentrated suspension of platelets washed from plasma, and platelet-rich plasma activated with calcium chloride (ActPRP) were used. The volume of the platelet preparations was 10-500 μl per 104 cells. The most effective dose of platelet-rich and platelet-poor plasma in cell culture was 20 μl, whereas for ActPRP, the most effective dose was 500 μl. Lysates of platelet-rich and platelet-poor plasma in doses of 100-500 μl inhibited fibroblast growth and disturbed their structural integrity. At the same time, lysates of washed platelets in doses of 10-500 μl stimulated cell growth and preserved their viability. An inverse correlation was found between the number of cells in culture and the level of proinflammatory cytokines in the platelet preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lisitsyn MP, Zaremuk AM, Lisitsyna EM, Atlukhanov RYa. Application of platelet-rich autoplasma in the treatment of gonarthrosis. Endoskop. Khirur. 2020;26(6):49-62. Russian. https://doi.org/10.17116/endoskop20202606149

    Article  Google Scholar 

  2. Samoday VG, Starikov AO, Kalashnikov PI. Lyophilized allogenic growth factors in traumatology and orthopedics as a promising direction of regenerative medicine. Politravma. 2019;(4): 15-28. Russian.

    Google Scholar 

  3. Fayn AM, Vaza AYu, Gnetetskiy SF, Skuratovskaya KI, Bondarev VB, Bogolyubskiy YuA, Titov RS, Sergeev AYu. Available methods to enhance regenerative potential of plastic materials for bone defects replacementin orthopedics. Part 1. Autologous platelet rich plasma. Transplantologiya. 2022;14(1):79-97. Russian. https://doi.org/10.23873/2074-0506-2022-14-1-79-97

    Article  Google Scholar 

  4. Etulain J. Platelets in wound healing and regenerative medicine. Platelets. 2018;29(6):556-568. https://doi.org/10.1080/09537104.2018.1430357

    Article  CAS  Google Scholar 

  5. Devereaux J, Dargahi N, Fraser S, Nurgali K, Kiatos D, Apostolopoulos V. Leucocyte-rich platelet-rich plasma enhances fibroblast and extracellular matrix activity: implications in wound healing. Int. J. Mol. Sci. 2020;21(18):6519. https://doi.org/10.3390/ijms21186519

    Article  CAS  Google Scholar 

  6. Borovkova NV, Makarov MS, Andreev YuV, Storozheva MV, Ponomarev IN. Comparing of cytokine content in serum and platelet soluble preparations, produced in different ways. Mol. Med. 2021;19(3):51-57. Russian. https://doi.org/10.29296/24999490-2021-03-08

    Article  Google Scholar 

  7. Golebiewska EM, Poole AW. Secrets of platelet exocytosis — what do we really know about platelet secretion mechanisms? Br. J. Haematol. 2013;165(2):204-216. https://doi.org/10.1111/bjh.12682

    Article  Google Scholar 

  8. Kim SJ, Davis RP, Jenne CN. Platelets as Modulators of Inflammation. Semin. Thromb. Hemost. 2018;44(2):91-101. https://doi.org/10.1055/s-0037-1607432

    Article  CAS  Google Scholar 

  9. Michno A, Kirkor Z, Gojtowska E, Suchorzewski M, Śmietańska I, Baścik B. Pulsed radiofrequency neuromodulation contributes to activation of platelet-rich plasma in in vitro conditions. Neuromodulation. 2021;24(8):1451-1457. https://doi.org/10.1111/ner.13105

    Article  Google Scholar 

  10. Kontorschikova KN, Shakhova KA, Yanchenko OS, Tikhomirova YuR, Bulat VV, Bulat AV. Determination of platelet-derived growth factors in platelet unenriched plasma. Med. Almanakh. 2018;(2):41-44. Russian.

  11. Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R. Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media. PLoS One. 2014;9(8):e104662. https://doi.org/10.1371/journal.pone.0104662

    Article  CAS  Google Scholar 

  12. Klatte-Schulz F, Schmidt T, Uckert M, Scheffler S, Kalus U, Rojewski M, Schrezenmeier H, Pruss A, Wildemann B. Comparative analysis of different platelet lysates and platelet rich preparations to stimulate tendon cell biology: an in vitro study. Int. J. Mol. Sci. 2018;19(1):212. https://doi.org/10.3390/ijms19010212

    Article  CAS  Google Scholar 

  13. Sergeeva NS, Shansky YaD, Sviridova IK, Kirsanova VA, Akhmedova SA, Kuvshinova EA, Meisner IS. Biological effects of platelet lysate added to cultural medium of human cells. Geni Kletki. 2014;9(1):77-85. Russian.

    Google Scholar 

  14. Shanskii YaD, Sergeeva NS, Sviridova IK, Kirakozov MS, Kirsanova VA, Akhmedova SA, Antokhin AI, Chissov VI. Human platelet lysate as a promising growth-stimulating additive for culturing of stem cells and other cell types. Bull. Exp. Biol. Med. 2013;156(1):146-151. https://doi.org/10.1007/s10517-013-2298-7

    Article  CAS  Google Scholar 

  15. Kalmykova NV, Skorobogataya EV, Berestovoy MA, Kruglyakov PV, Estrina MA, Afanasiev BV, Polintsev DG. Comparative characteristics of platelet lysates from different donors. Bull. Exp. Biol. Med. 2011;151(4):547-549. https://doi.org/10.1007/s10517-011-1378-9

    Article  CAS  Google Scholar 

  16. Notodihardjo SC, Morimoto N, Kakudo N, Mitsui T, Le TM, Tabata Y, Kusumoto K. Comparison of the efficacy of cryopreserved human platelet lysate and refrigerated lyophilized human platelet lysate for wound healing. Regen. Ther. 2018;10:1-9. https://doi.org/10.1016/j.reth.2018.10.003

    Article  Google Scholar 

  17. Makarov MS, Storozheva MV, Konyushko OI, Borovkova NV, Khvatov VB. Effect of concentration of platelet-derived growth factor on proliferative activity of human fibroblasts. Bull. Exp. Biol. Med. 2013;155(4):576-580. https://doi.org/10.1007/s10517-013-2199-9

    Article  CAS  Google Scholar 

  18. Makarov MS, Storozheva MV, Borovkova NV, Ponomarev IN. Growth-stimulating effect of human platelets stabilized with silver nanoparticles. Bull. Exp. Biol. Med. 2019;166(2):260-263. https://doi.org/10.1007/s10517-018-4328-y

    Article  CAS  Google Scholar 

  19. Joos H, Wildner A, Hogrefe C, Reichel H, Brenner RE. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage. Arthritis Res. Ther. 2013;15(5):R119. https://doi.org/10.1186/ar4299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Makarov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 183-188, September, 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, M.S., Storozheva, M.V., Borovkova, N.V. et al. Growth-Stimulating Effect of Platelet Preparations Obtained by Different Methods on Human Fibroblast Culture. Bull Exp Biol Med 174, 159–163 (2022). https://doi.org/10.1007/s10517-022-05666-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05666-1

Key Words

Navigation