Skip to main content
Log in

Ultradian Biorhythms of C57BL/6 Mice Body Temperature under Constant Illumination or during Natural Day-Night Cycle

  • EXPERIMENTAL BIOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The study analyzed the dynamics of intraperitoneal body temperature in C57BL/6 mice during 39 days of uninterrupted measurements. When mice were exposed to constant illumination, the ultradian oscillations of body temperature demonstrated the rhythms with periods of 2 h, 60 min, and 12 min, which were the higher harmonics of the circadian temperature oscillations. In two mutually isolated groups exposed to constant illumination, the phases of revealed biorhythms coincided. When the mice maintained under natural illumination, the body temperature demonstrated the ultradian rhythms with the same periods, which indicated that constant illumination did not distort the parameters of ultradian biorhythms. Probably, there is an external biotropic factor with similar harmonic spectrum, which synchronizes these biorhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antokhin AI, Zharkova NA, Zakharchenko AV, Romanov YA. Rhythms of cell division of different periodicity in small intestinal cryptic epithelium and their contribution to circadian rhythm formation. Bull. Exp. Biol. Med. 2012;152(4):486-488. https://doi.org/10.1007/s10517-012-1559-1

    Article  CAS  PubMed  Google Scholar 

  2. Brodsky VY. Circahoralian (Ultradian) metabolic rhythms. Biochemistry (Moscow). 2014;79(6):483-495.

    Article  CAS  Google Scholar 

  3. Brodskii VY, Mal’chenko LA, Dubovaya TK, Konchenko DS, Zvezdina ND. Administration of dopamine to rats disorganizes the rhythm of protein synthesis in hepatocytes. Bull. Exp. Biol. Med. 2014;157(2):220-223. https://doi.org/10.1007/s10517-014-2529-6

    Article  CAS  PubMed  Google Scholar 

  4. Diatroptov ME. The influence of the lighting mode on the ultradian rhythm of testosterone level in the serum of male rabbits. Geofiz. Protsessy Biosfera. 2013;12(1):62-69. Russian.

  5. Diatroptov ME, Diatroptova MA, Kosyreva AM, Dzhalilova DS, Mkhitarov VA, Mikhailova LP, Makarova OV. Ultradian Rhythms of Body Temperatures in Male Wistar Rats Maintained under Conditions of Constant Illumination. Bull. Exp. Biol. Med. 2019;167(6):735-739. https://doi.org/10.1007/s10517-019-04611-z

    Article  CAS  PubMed  Google Scholar 

  6. Zenchenko ТА, Medvedeva AA, Khorseva NI, Breus ТK. Synchronization of heart rate indices of human and geomagnetic field variations in the frequency range of 0.5-3.0 mHz. Geofiz. Protsessy Biosfera. 2013;12(4):73-84. Russian.

  7. Martynyuk VS, Vladimirskii BM, Temur’yants NA. Biological rhythms and electromagnetic fields of the environment. Geofiz. Protsessy Biosfera. 2006;5(1):5-23. Russian.

  8. Sukhorukov MV, Spivak AA. Spatial and temporal characteristics of the field of radon in connection with the tectonic structures. Uspekhi Sovremen. Estesvoznan. 2017;(1):94-99. Russian.

  9. Blessing W, Ootsuka Y. Timing of activities of daily life is jaggy: How episodic ultradian changes in body and brain temperature are integrated into this process. Temperature (Austin). 2016;3(3):371-383.

    Article  Google Scholar 

  10. Braulke LJ, Heldmaier G. Torpor and ultradian rhythms require an intact signalling of the sympathetic nervous system. Cryobiology. 2010;60(2):198-203.

    Article  CAS  Google Scholar 

  11. Didyk LA, Bogdanov VB, Lysenko VA, Didyk NP, Gorgo YP, Dirckx JJ. The effects of slight pressure oscillations in the far infrasound frequency range on the pars flaccida in gerbil and rabbit ears. Int. J. Biometeorol. 2007;51(3):221-231.

    Article  CAS  Google Scholar 

  12. Didyk LA, Gorgo YP, Dirckx JJ, Bogdanov VB, Buytaert JA, Lysenko VA, Didyk NP, Vershygora AV, Erygina VT. Atmospheric pressure fluctuations in the far infrasound range and emergency transport events coded as circulatory system diseases. Int. J. Biometeorol. 2008;52(7):553-561.

    Article  CAS  Google Scholar 

  13. Goh GH, Maloney SK, Mark PJ, Blache D. Episodic ultradian events-ultradian rhythms. Biology (Basel). 2019;8(1). pii: E15. https://doi.org/10.3390/biology8010015

  14. Prendergast BJ, Cisse YM, Cable EJ, Zucker I. Dissociation of ultradian and circadian phenotypes in female and male Siberian hamsters. J. Biol. Rhythms. 2012;27(4):287-298.

    Article  CAS  Google Scholar 

  15. Waite EJ, McKenna M, Kershaw Y, Walker JJ, Cho K, Piggins HD, Lightman SL. Ultradian corticosterone secretion is maintained in the absence of circadian cues. Eur. J. Neurosci. 2012;36(8):3142-3150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Diatroptov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 169, No. 3, pp. 361-365, March, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diatroptov, M.E., Diatroptova, M.A., Aleksankina, V.V. et al. Ultradian Biorhythms of C57BL/6 Mice Body Temperature under Constant Illumination or during Natural Day-Night Cycle. Bull Exp Biol Med 169, 388–392 (2020). https://doi.org/10.1007/s10517-020-04893-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04893-8

Key Words

Navigation