Skip to main content

Advertisement

Log in

3D-Technology of the Formation and Maintenance of Single Dormant Microspheres from 2000 Human Somatic Cells and Their Reactivation In Vitro

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We developed an original reproducible 3D-technology for preparation of single dormant microspheres consisting of 2000 somatic cells. The dynamics of microsphere assembly from mesenchymal and epithelial cells of retinal pigment epithelium was traced using time-lapse microscopy: formation of a loose aggregate over 24 h followed by its gradual consolidation and formation of a compact viable microsphere with a diameter of 100–150 μ by day 7. The cell number in the formed microspheres remains unchanged. Reactivation observed upon fusion of epithelial and/or mesenchymal microspheres results in the formation of a united compact microtissue. The fusion dynamics reproduces spherogenesis irrespective of the initial amount of co-cultured microspheres. Reactivation via two-step induced angiogenesis opens new prospects for production of vascularized microspheres and microtissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Gorkun, I. N. Saburina, N. V. Kosheleva, et al., Patol. Fiziol. Eksp. Ter., No. 4, 50–53 (2012).

  2. I. M. Zurina, N. V. Kosheleva, A. A. Gorkun, and I. N. Saburina, Ontogenez, 44, No. 4, 226–227 (2013).

    Google Scholar 

  3. I. N. Saburina, A. A. Gorkun, N. V. Kosheleva, et al., Vestn. Novykh. Med. Tekhnol., No. 4, 9–11 (2009).

  4. I. N. Saburina and V. S. Repin, Klet. Transplantol. Tkan. Inzheneriya, 5, No. 2, 75–86 (2010).

    Google Scholar 

  5. M. Yu. Shagidulin, A. A. Gorkun, N. A. Onishchenko, et al., Vestn. Transplantol. Iskusstven. Organov, 15, No. 3, 73–82 (2013).

    Google Scholar 

  6. A. Acquistapace, T. Bru, P. F. Lesault, et al., Stem Cells, 29, No. 5, 812–824 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. C. L. Adams, Y. T. Chen, S. J. Smith, and W. J. Nelson, J. Cell Biol., 142, No. 4, 1105–1119 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. D. Avitabile, A. Crespi, C. Brioschi, et al., Am. J. Physiol. Heart Circ. Physiol., 300, No. 5, H1875-H1884 (2011).

    Article  PubMed  Google Scholar 

  9. M. Baker, Nature, 466, 1137–1140 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. H. C. Beck, J. Petersen, O. Felthaus, et al., Hypertens. Res., 36, No. 11, 2002–2007 (2011).

    CAS  Google Scholar 

  11. Y. Buganim, D. A. Faddah, and R. Jaenisch, Nat. Rev. Genet., 14, No. 6, 427–439 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. E. Bullmore and O. Sporns, Nat. Rev. Neurosci., 10, No. 3, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. J. C. Chappell and V. L. Bautch, Curr. Top. Dev. Biol., 90, 43–72 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. N. C. Cheng, S. Wang, and T. H. Young, Biomaterials, 33, No. 6, 1748–1758 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. G. F. Chi, H. Choi, M. H. Jiang, et al., TERM., 8, No. 2, 238–247 (2011).

    Google Scholar 

  16. L. G. Griffith and M. A. Swartz, Nat. Rev. Mol. Cell Biol., 7, No. 3, 211–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. W. H. Lai, J. C. Ho, Y.K. Lee, et al.,Cell Reprogram., 12, No. 6, 641–653 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. P. G. Layer, A. Rothermel, and E. Willbold, Neuroreport., 12, No. 7, A39-A46 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. R. Z. Lin and N. Y. Chang, Biotechnol. J., 3, Nos. 9–10, 1172–1184 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. X. Liu, V. Ory, S. Chapman, et al., Am. J. Pathol., 180, No. 2, 599–607 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Z. Ma, H. Yang, H. Liu, et al., PLoS One, 8, No. 2, doi: 10.1371/journal.pone.0056554 (2013).

  22. M. Maeda, K. R. Johnson, and M. J. Wheelock, J. Cell Sci., 118, Pt. 5, 873–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. C. M. Megyola, Y. Gao, A. M. Teixeira, et al., Stem Cells, 31, No. 5, 895–905 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. C. M. Morshead, B. A. Reynolds, C. G. Craig, et al., Neuron.,13, No. 5, 1071–1082 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. A. P. Napolitano, P. Chai, D. M. Dean, and J. R. Morgan, Tissue Eng., 13, No. 8, 2087–2094 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. A. P. Napolitano, D. M. Dean, A. J. Man, et al., Biotechniques, 43, No. 4, 494, 496–500 (2007).

    Article  Google Scholar 

  27. E. Pastrana, V. Silva-Vargas, and F. Doetsch, Cell Stem Cells, 8, No. 5, 486–498 (2011).

    Article  CAS  Google Scholar 

  28. D. M. Pedrotty, R. Y. Klinger, N. Badie, et al., Am. J. Physiol. Heart Circ. Physiol., 295, No. 1, H390-H400 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. L. Ringrose and R. Paro, Development, 134, No. 2, 223–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. D. Schmidt, E. J. Joyce, and W. J. Kao, Acta Biomater., 7, No. 2, 515–525 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. T. Scholren and J. Gerdes, J. Cell. Physiol., 182, No. 3, 311–322 (2000).

    Article  Google Scholar 

  32. Y. H. Song, K. Pinkernell, and E. Alt, Cell Cycle., 10, No. 14, 2281–2286 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. K. Tanner, H. Mori, R. Mroue, et al., Proc. Natl Acad. Sci. USA, 109, No. 6, 1973–1978 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. A. Terunuma, R.P. Limgala, C.J. Park, et al., Tissue Eng. Part A, 16, No. 4, 1363–1368 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. H. Wang, S. Lacoche, L. Huang, et al., Proc. Natl Acad. Sci. USA, 110, No. 1, 163–168 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kosheleva.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 161–168, July, 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repin, V.S., Saburina, I.N., Kosheleva, N.V. et al. 3D-Technology of the Formation and Maintenance of Single Dormant Microspheres from 2000 Human Somatic Cells and Their Reactivation In Vitro . Bull Exp Biol Med 158, 137–144 (2014). https://doi.org/10.1007/s10517-014-2709-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-014-2709-4

Key Words

Navigation