Skip to main content
Log in

Neuromuscular model achieving speed control and steering with a 3D bipedal walker

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Nowadays, very few humanoid robots manage to travel in our daily environments. This is mainly due to their limited locomotion capabilities, far from the human ones. Recently, we developed a bio-inspired torque-based controller recruiting virtual muscles driven by reflexes and a central pattern generator. Straight walking experiments were obtained in a 3D simulation environment, resulting in the emergence of human-like and robust gait patterns, with speed modulation capabilities. In this paper, we extend this model, in order to control the steering direction and curvature. Based on human turning strategies, new control pathways are introduced and optimized to reach the sharpest possible turns. In sum, tele-operated motions can be achieved through the control of two scalar inputs (i.e. forward speed and heading). This is particularly relevant for steering the robot on-line, and navigating in cluttered environments. Finally, the biped demonstrated significant robustness during blind walking experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aoi, S., & Tsuchiya, K. (2005). Locomotion control of a biped robot using nonlinear oscillators. Autonomous Robots, 19(3), 219–232. https://doi.org/10.1007/s10514-005-4051-1.

    Article  Google Scholar 

  • Arechavaleta, G., Laumond, J. P., Hicheur, H., & Berthoz, A. (2008). An optimality principle governing human walking. IEEE Transactions on Robotics, 24(1), 5–14. https://doi.org/10.1109/TRO.2008.915449.

    Article  Google Scholar 

  • Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., & Kanade, T. (2005). Footstep planning for the Honda ASIMO humanoid. In Proceedings of the 2005 IEEE international conference on robotics and automation (pp. 629–634). IEEE. https://doi.org/10.1109/ROBOT.2005.1570188.

  • Colasanto, L., Van der Noot, N., & Ijspeert, A. J. (2015). Bio-inspired walking for humanoid robots using feet with human-like compliance and neuromuscular control. In 2015 IEEE-RAS 15th international conference on humanoid robots (humanoids) (pp. 26–32). https://doi.org/10.1109/HUMANOIDS.2015.7363518.

  • Collins, S., & Ruina, A. (2005). A bipedal walking robot with efficient and human-like gait. In Proceedings of the 2005 IEEE international conference on robotics and automation (pp. 1983–1988). IEEE. https://doi.org/10.1109/ROBOT.2005.1570404.

  • Courtine, G., & Schieppati, M. (2003). Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. The European Journal of Neuroscience, 18(1), 177–190.

    Article  Google Scholar 

  • Courtine, G., Papaxanthis, C., & Schieppati, M. (2006). Coordinated modulation of locomotor muscle synergies constructs straight-ahead and curvilinear walking in humans. Experimental Brain Research, 170(3), 320–35. https://doi.org/10.1007/s00221-005-0215-7.

    Article  Google Scholar 

  • Daley, M. A., Felix, G., & Biewener, A. A. (2007). Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control. The Journal of Experimental Biology, 210(Pt 3), 383–394. https://doi.org/10.1242/jeb.02668.

    Article  Google Scholar 

  • Dallali, H. (2011). Modelling and dynamic stabilization of a compliant humanoid robot, CoMan. Ph.D. thesis, University of Manchester.

  • Dallali, H., Mosadeghzad, M., Medrano-Cerda, G., Docquier, N., Kormushev, P., Tsagarakis, N., et al. (2013). Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In 2013 IEEE international conference on mechatronics, ICM (pp. 598–603). IEEE. https://doi.org/10.1109/ICMECH.2013.6519110.

  • Deits, R., & Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-integer convex optimization. In 2014 IEEE-RAS international conference on humanoid robots (pp. 279–286). https://doi.org/10.1109/HUMANOIDS.2014.7041373.

  • Desai, R., & Geyer, H. (2013). Muscle-reflex control of robust swing leg placement. In 2013 IEEE international conference on robotics and automation (pp. 2169–2174). IEEE. https://doi.org/10.1109/ICRA.2013.6630868.

  • Docquier, N., Poncelet, A., & Fisette, P. (2013). ROBOTRAN: A powerful symbolic generator of multibody models. Mechanical Sciences, 4(1), 199–219. https://doi.org/10.5194/ms-4-199-2013.

    Article  Google Scholar 

  • Dzeladini, F., van den Kieboom, J., & Ijspeert, A. (2014). The contribution of a central pattern generator in a reflex-based neuromuscular model. Frontiers in Human Neuroscience, 8(June), 1–18. https://doi.org/10.3389/fnhum.2014.00371.

    Article  Google Scholar 

  • Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(2), 164–173. https://doi.org/10.1109/TNSRE.2009.2039620.

    Article  Google Scholar 

  • Faraji, S., Pouya, S., & Ijspeert, A. (2014). Robust and agile 3d biped walking with steering capability using a footstep predictive approach. Robotics: Science and Systems Foundation. https://doi.org/10.15607/RSS.2014.X.028.

  • Fitzpatrick, P., Harada, K., Kemp, C. C., Matsumoto, Y., Yokoi, K., & Yoshida, E. (2016). Humanoids. In O. Khatib & B. Siciliano (Eds.), Springer handbook of robotics (pp. 1789–1818). Berlin: Springer International Publishing.

    Chapter  Google Scholar 

  • Geijtenbeek, T., van de Panne, M., & van der Stappen, A. F. (2013). Flexible muscle-based locomotion for bipedal creatures. ACM Transactions on Graphics, 32(6), 206:1–206:11. https://doi.org/10.1145/2508363.2508399.

    Article  Google Scholar 

  • Geyer, H., & Herr, H. (2010). A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 263–73. https://doi.org/10.1109/TNSRE.2010.2047592.

    Article  Google Scholar 

  • Heremans, F., Van der Noot, N., Ijspeert, A. J., & Ronsse, R. (2016). Bio-inspired balance controller for a humanoid robot. In 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob) (pp. 441–448). https://doi.org/10.1109/BIOROB.2016.7523667.

  • Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B: Biological Sciences, 126(843), 136–195. https://doi.org/10.1098/rspb.1938.0050.

    Article  Google Scholar 

  • Hobbelen, D. G. E., & Wisse, M. (2007). Humanoid robots, human-like machines—Chapter 14: limit cycle walking. https://doi.org/10.5772/4808.

  • Hobbelen, D., Boer, T., & Wisse, M. (2008). System overview of bipedal robots flame and TUlip: Tailor-made for limit cycle walking. In 2008 IEEE/RSJ international conference on intelligent robots and systems (pp. 2486–2491). https://doi.org/10.1109/IROS.2008.4650728.

  • Horak, F. B., & Nashner, L. M. (1986). Central programming of postural movements: Adaptation to altered support-surface configurations. Journal of Neurophysiology, 55(6), 1369–1381.

    Article  Google Scholar 

  • Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653. https://doi.org/10.1016/j.neunet.2008.03.014.

    Article  Google Scholar 

  • Johnson, M., Shrewsbury, B., Bertrand, S., Calvert, D., Wu, T., Duran, D., et al. (2016). Team IHMC’s lessons learned from the DARPA robotics challenge: Finding data in the rubble. Journal of Field Robotics. https://doi.org/10.1002/rob.21674.

  • Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., et al. (2002). Design of prototype humanoid robotics platform for HRP. In IEEE/RSJ international conference on intelligent robots and system (Vol. 3, pp. 2431–2436). IEEE. https://doi.org/10.1109/IRDS.2002.1041632.

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95–international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968.

  • Kuo, A. D. (2002). The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control, 6(2), 129–145.

    Article  Google Scholar 

  • Kurazume, R., Tanaka, S., Yamashita, M., Hasegawa, T., & Yoneda, K. (2005). Straight legged walking of a biped robot. In 2005 IEEE/RSJ international conference on intelligent robots and systems (pp. 337–343). IEEE. https://doi.org/10.1109/IROS.2005.1545447.

  • Matsuoka, K. (1985). Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological cybernetics, 52(6), 367–376. https://doi.org/10.1007/BF00449593.

    Article  MathSciNet  MATH  Google Scholar 

  • Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56(5–6), 345–353. https://doi.org/10.1007/BF00319514.

    Article  Google Scholar 

  • McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57(1), 134–146. https://doi.org/10.1016/j.brainresrev.2007.08.006.

    Article  Google Scholar 

  • McGeer, T. (1990). Passive dynamic walking. The International Journal of Robotics Research, 9(2), 62–82. https://doi.org/10.1177/027836499000900206.

    Article  Google Scholar 

  • Minassian, K., Hofstoetter, US., Dzeladini, F., Guertin, PA., Ijspeert, A. (2017). The human central pattern generator for locomotion: Does it exist and contribute to walking? The Neuroscientist. https://doi.org/10.1177/1073858417699790.

  • Patla, A. E., Adkin, A., & Ballard, T. (1999). Online steering: Coordination and control of body center of mass, head and body reorientation. Experimental Brain Research, 129(4), 629–634. https://doi.org/10.1007/s002210050932.

    Article  Google Scholar 

  • Paul, C., Bellotti, M., Jezernik, S., & Curt, A. (2005). Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biological Cybernetics, 93(3), 153–170. https://doi.org/10.1007/s00422-005-0559-x.

    Article  MATH  Google Scholar 

  • Rossignol, S., Dubuc, R., & Gossard, J. P. (2006). Dynamic sensorimotor interactions in locomotion. Physiological Reviews, 86(1), 89–154. https://doi.org/10.1152/physrev.00028.2005.

    Article  Google Scholar 

  • Samin, JC., Fisette, P. (2003). Symbolic modeling of multibody systems. In Solid mechanics and its applications (Vol. 112). Springer.

  • Sardain, P., & Bessonnet, G. (2004). Zero moment point-measurements from a human walker wearing robot feet as shoes. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 34(5), 638–648. https://doi.org/10.1109/TSMCA.2004.832833.

    Article  Google Scholar 

  • Schaal, S. (2007). The new robotics-towards human-centered machines. HFSP Journal, 1(2), 115–26. https://doi.org/10.2976/1.2748612.

    Article  Google Scholar 

  • Smith, E. P., & Rose, K. A. (1995). Model goodness-of-fit analysis using regression and related techniques. Ecological Modelling, 77(1), 49–64. https://doi.org/10.1016/0304-3800(93)E0074-D.

    Article  Google Scholar 

  • Song, S., & Geyer, H. (2015). A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. The Journal of Physiology. https://doi.org/10.1113/JP270228.

  • Stokes, V. P., Andersson, C., & Forssberg, H. (1989). Rotational and translational movement features of the pelvis and thorax during adult human locomotion. Journal of Biomechanics, 22(1), 43–50.

    Article  Google Scholar 

  • Taga, G. (1994). Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D: Nonlinear Phenomena, 75(1–3), 190–208. https://doi.org/10.1016/0167-2789(94)90283-6.

    Article  MATH  Google Scholar 

  • Tsagarakis, N., Laffranchi, M., Vanderborght, B., & Caldwell, D. (2009). A compact soft actuator unit for small scale human friendly robots. In 2009 IEEE international conference on robotics and automation (pp. 4356–4362). https://doi.org/10.1109/ROBOT.2009.5152496.

  • Tsagarakis, N. G., Morfey, S., Medrano Cerda, G., Li, Z., & Caldwell, D. G. (2013). COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control. In Proceedings—IEEE international conference on robotics and automation (pp. 673–678). https://doi.org/10.1109/ICRA.2013.6630645.

  • Van der Noot, N., Colasanto, L., Barrea, A., van den Kieboom, J., Ronsse, R., & Ijspeert, A. J. (2015a). Experimental validation of a bio-inspired controller for dynamic walking with a humanoid robot. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 393–400). https://doi.org/10.1109/IROS.2015.7353403.

  • Van der Noot, N., Ijspeert, A. J., & Ronsse, R. (2015b). Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model. In 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA (pp. 6267–6274). https://doi.org/10.1109/ICRA.2015.7140079.

  • Van der Noot, N., Ijspeert, A. J., & Ronsse, R. (2018). Bio-inspired controller achieving forward speed modulation with a 3d bipedal walker. The International Journal of Robotics Research, 37(1), 168–196. https://doi.org/10.1177/0278364917743320.

    Article  Google Scholar 

  • Vukobratovic, M., & Borovac, B. (2004). Zero-moment point-thirty five years of its life. International Journal of Humanoid Robotics, 01(01), 157–173. https://doi.org/10.1142/S0219843604000083.

    Article  Google Scholar 

  • Wang, J. M., Hamner, S. R., Delp, S. L., & Koltun, V. (2012). Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Transactions on Graphics, 31, 25.

    Google Scholar 

  • Winter, D. A. (1995). Anatomy, biomechanics and control of balance during standing and walking. Waterloo: Waterloo Biomechanics.

    Google Scholar 

  • Zobova, A. A., Habra, T., Van der Noot, N., Dallali, H., Tsagarakis, N. G., Fisette, P., et al. (2017). Multi-physics modelling of a compliant humanoid robot. Multibody System Dynamics, 39(1–2), 95–114. https://doi.org/10.1007/s11044-016-9545-4.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Van der Noot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Belgian F.R.S.-FNRS (Aspirant #16744574 awarded to NVdN) and by the European Community’s Seventh Framework Programme under Grant 611832 (WALK-MAN).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 7903 KB)

Supplementary material 2 (mp4 15095 KB)

Supplementary material 3 (mp4 2532 KB)

Appendices

Appendices

1.1 Appendix 1: Stimulations for curved motion

The stimulations computation rules from Van der Noot et al. (2018) affected by the curved motion updates (see Sect. 3) are summarized here. More details (e.g. time delays) are provided in that former contribution. Variables presented in Sect. 3 are not detailed here.

The hip lateral joints are controlled by the HAB and HAD muscles. First, the HAB muscles receive stimulations coming from the CPG. These stimulations are mainly proportional to \([x_E]^{+}\) (excited by \(u_E\)) for the right leg and to \([x_F]^{+}\) (excited by \(u_F\)) for the left leg.

During the leg supporting phase, the following proportional-derivative (PD) control is applied: \(\varDelta _{\varPsi ,\{R,L\}} = (k_{p,\varPsi }\,(\delta \,{ }\varPsi _{ref,\{R,L\}}^{*} - \varPsi _t) - k_{d,\varPsi }\,\dot{\varPsi }_t)\,\tilde{F}_{gd,\{R,L\}}\), where \(k_{p,\varPsi }\) and \(k_{d,\varPsi }\) are parameters to optimize, \(\varPsi _t\) is the torso lateral lean angle and \(\dot{\varPsi }_t\) is its derivative. \(\delta \) equals 1 for the right leg and \(-\,1\) for the left one. Finally, \(\tilde{F}_{gd,\{R,L\}}\) is the vertical force below the corresponding foot, normalized to the walker weight. Then, HAB and HAD muscles are mainly commanded by a stimulation equal to \([\varDelta _{\varPsi ,\{R,L\}}]^{+}\) or \([\varDelta _{\varPsi ,\{R,L\}}]^{-}\).

During the contralateral leg supporting phase, a hip lateral reference angle \(\varphi _{h,l,ref,\{R,L\}}\) is computed as \(- k_{p,\varLambda ,h} (-\delta \,\varLambda _{ref,h,\{R,L\}}^{*} - \varDelta _{com,\{L,R\}}) + k_{d,\varLambda ,h}\,\dot{\varDelta }_{com,\{L,R\}}\), where \(k_{p,\varLambda ,h}\) and \(k_{d,\varLambda ,h}\) are control parameters to optimize, \(\varDelta _{com,L}\) is the COM lateral position, relative to the left foot and \(\dot{\varDelta }_{com,L}\) its derivative (similar for \(\varDelta _{com,R}\) and \(\dot{\varDelta }_{com,R}\) relative to the right foot). The resulting local angle reference \(\varphi _{h,l,ref,\{R,L\}}\) is later maintained by using a similar PD control rule as described above (i.e. for the supporting phase), with similar stimulations sent to HAB and HAD.

The hip transverse joints are controlled with the following PD computation: \(\varDelta _{trans,\{R,L\}} = 500 \, (\varphi _{h,t,ref,\{R,L\}} - \varphi _{h,t,\{R,L\}}) - 20 \, \dot{\varphi }_{h,t,\{R,L\}}\), where \(\varphi _{h,t,\{R,L\}}\) is the hip joint transverse position and \(\dot{\varphi }_{h,t,\{R,L\}}\) is its derivative. Stimulation equal to \([\varDelta _{trans,\{R,L\}}]^{+}\) or \([\varDelta _{trans,\{R,L\}}]^{-}\) are then sent to the HER and HIR muscles.

1.2 Appendix 2: Optimization parameters

The parameters to be optimized in the controller, and their ranges are reported Table 2: the transverse (t) and lateral (l) leg parameters, as well as the CPG-related parameters. The speed dependent parameters are computed as follows: \(k_{y,in} = K_{y,in} + L_{y,in}\,v_{*}\); \(k_{y,out} = K_{y,out} + L_{y,out}\,v_{*} + M_{y,out}\,v_{*}^2\); \(\varDelta _\varLambda = K_{\varDelta ,\varLambda } + L_{\varDelta ,\varLambda }\,v_{*}\); \(\varDelta _\varPsi = K_{\varDelta ,\varPsi } + L_{\varDelta ,\varPsi }\,v_{*} + M_{\varDelta ,\varPsi }\,v_{*}^2\); \(\eta _{o} = K_{\eta ,o} + L_{\eta ,o}\,v_{*}\); \(\nu _{l} = K_{\nu ,l} + L_{\nu ,l}\,v_{*} + M_{\nu ,l}\,v_{*}^2\), where \(v_{*} = v_{{ ref}} - 0.65\) and \(v_{{ ref}}\) is the target forward speed. The parameters optimized for the reference controller are provided in the simulation code extension (Online Resource 1).

Table 2 Optimization parameters and their bounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van der Noot, N., Ijspeert, A.J. & Ronsse, R. Neuromuscular model achieving speed control and steering with a 3D bipedal walker. Auton Robot 43, 1537–1554 (2019). https://doi.org/10.1007/s10514-018-9814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9814-6

Keywords

Navigation