Skip to main content
Log in

Behavioral control of unmanned aerial vehicle manipulator systems

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper a behavioral control framework is developed to control an unmanned aerial vehicle-manipulator (UAVM) system, composed by a multirotor aerial vehicle equipped with a robotic arm. The goal is to ensure vehicle-arm coordination and manage complex multi-task missions, where different behaviors must be encompassed in a clear and meaningful way. In detail, a control scheme, based on the null space-based behavioral paradigm, is proposed to handle the coordination between the arm and vehicle motion. To this aim, a set of basic functionalities (elementary behaviors) are designed and combined in a given priority order, in order to attain more complex tasks (compound behaviors). A supervisor is in charge of switching between the compound behaviors according to the mission needs and the sensory feedback. The method is validated on a real testbed, consisting of a multirotor aircraft with an attached 6 Degree of Freedoms manipulator, developed within the EU-funded project ARCAS (Aerial Robotics Cooperative Assembly System). At the the best of authors’ knowledge, this is the first time that an UAVM system is experimentally tested in the execution of complex multi-task missions. The results show that, by properly designing a set of compound behaviors and a supervisor, vehicle-arm coordination in complex missions can be effectively managed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alur, R., & Yannakakis, M. (2001). Model checking of hierarchical state machines. ACM Tranactions on Programming Languages and Systems, 23(3), 273–303.

    Article  Google Scholar 

  • Antonelli, G. (2009). Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic system. IEEE Transactions on Robotics, 25, 985–994.

    Article  Google Scholar 

  • Antonelli, G., & Cataldi, E. (2014). Adaptive control of arm-equipped quadrotors. theory and simulations. In Proceedings of 22th mediterranean conference on control and automation.

  • Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008). The null-space-based behavioral control for autonomous robotic systems. Journal of Intelligent Service Robotics, 1(1), 27–39.

    Article  Google Scholar 

  • Antonelli, G., Arrichiello, F., & Chiaverini, S. (2009). Experiments of formation control with multirobot systems using the null-space-based behavioral control. IEEE Transactions on Control Systems Technology, 17(5), 1173–1182.

    Article  Google Scholar 

  • Antonelli, G., Arrichiello, F., & Chiaverini, S. (2010). The NSB control: A behavior-based approach for multi-robot systems. Paladyn Journal of Behavioral Robotics, 1(1), 48–56.

    Article  Google Scholar 

  • Antonelli, G., Baizid, K., Caccavale, F., Giglio, G., Muscio, G., & Pierri, F. (2014a). Control software architecture for cooperative multiple unmanned aerial vehicle-manipulator systems. Journal of Software Engineering for Robotics, 5, 1–12.

    Google Scholar 

  • Antonelli, G., Baizid, K., Caccavale, F., Giglio, G., & Pierri, F. (2014b). Cooperative unmanned aerial vehicles manipulator systems: A control software architecture. In 19th world congress of the international federation of automatic control (pp. 1108–1113).

  • ARCAS. (2011). ARCAS-Aerial Robotics Cooperative Assembly System. http://www.arcas-project.eu.

  • Arkin, R. (1998). Behavior-based robotics. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Arleo, G., Caccavale, F., Muscio, G., & Pierri, F. (2013). Control of quadrotor aerial vehicles equipped with a robotic arm. In Proceedings of 21th mediterranean conference on control and automation (pp. 1174–1180).

  • Baizid, K., Caccavale, F., Chiaverini, S., Giglio, G., & Pierri, F. (2014). Safety in coordinated control of multiple unmanned aerial vehicle manipulator systems: Case of obstacle avoidance. In Proceedings of 22th mediterranean conference on control and automation.

  • Baizid, K., Giglio, G., Pierri, F., Trujillo, M., Antonelli, G., & Caccavale, F., et al. (2015). Experiments on behavioral coordinated control of an unmanned aerial vehicle manipulator system. In 2015 IEEE international conference on robotics and automation (ICRA), IEEE (pp. 4680–4685).

  • Caccavale, F., Giglio, G., Muscio, G., & Pierri, F. (2014). Adaptive control for UAVs equipped with a robotic arm. In Proceedings of the 19th world congress the international federation of automatic control (IFAC) (pp. 11049–11054).

  • Cano, R., Pérez, C., Pruaño, F., Ollero, A., & Heredia, G. (2013). Mechanical design of a 6-DOF aerial manipulator for assembling bar structures using UAVs. In 2nd RED-UAS 2013 workshop on research, education and development of unmanned aerial systems.

  • Chiaverini, S., Oriolo, G., & Walker, I. D. (2008). Kinematically redundant manipulators. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 245–268). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Doitsidis, L., Weiss, S., Renzaglia, A., Achtelik, M. W., Kosmatopoulos, E., Siegwart, R., & Scaramuzza, D. (2012). Optimal surveillance coverage for teams of micro aerial vehicles in gps-denied environments using onboard vision. Autonomous Robots, 33(1–2), 173–188.

  • Escande, A., Mansard, N., & Wieber, P. B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. International Journal of Robotics Research, 33(7), 1006–1028.

    Article  Google Scholar 

  • Fumagalli, M., Naldi, R., Macchelli, A., Forte, F., Keemink, A., Stramigioli, S., et al. (2014). Developing an aerial manipulator prototype: Physical interaction with the environment. IEEE Robotics Automation Magazine, 21(3), 41–50.

    Article  Google Scholar 

  • Guarino Lo Bianco, C., & Zanasi, R. (2003). Smooth profile generation for a tile printing machine. IEEE Transactions on Industrial Electronics, 50(3), 471–477.

    Article  Google Scholar 

  • Huber, F., Kondak, K., Krieger, K., Sommer, D., Schwarzbach, M., & Laiacker, M., et al. (2013). First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. In 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3452–3457).

  • Kendoul, F., Fantoni, I., & Lozano, R. (2008) Asymptotic stability of hierarchical inner-outer loop-based flight controllers. In Proceedings of the 17th IFAC world congress (pp. 1741–1746).

  • Kim, S., Choi, S., & Kim, H. (2013). Aerial manipulation using a quadrotor with a two dof robotic arm. In 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4990–4995).

  • Kondak, K., Krieger, K., Albu Schaeffer, A., & Ollero, A. (2013). Closed-loop behavior of an autonomous helicopter equipped with a robotic arm for aerial manipulation tasks. International Journal of Advanced Robotic Systems, 10, 1–9.

    Article  Google Scholar 

  • Kondak, K., Huber, F., Schwarzbach, M., Laiacker, M., Sommer, D., & Bejar, M., et al. (2014). Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator. In 2014 IEEE international conference on robotics and automation (ICRA) (pp. 2107–2112).

  • Lippiello, V., & Ruggiero, F. (2012a). Cartesian impedance control of uav with a robotic arm. In Proceedings of 10th international IFAC symposiums on robot control (pp. 704–709).

  • Lippiello, V., & Ruggiero, F. (2012b). Exploiting redundancy in cartesian impedance control of uavs equipped with a robotic arm. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3768–3773).

  • Mansard, N., & Chaumette, F. (2009). Directional redundancy for robot control. IEEE Transactions on Automatic Control, 54(6), 1179–1192.

    Article  MathSciNet  Google Scholar 

  • Maza, I., & Ollero, A. (2011). Autonomous transportation and deployment with aerial robots for search and rescue missions. Journal of Field Robotics, 28(6), 914–931.

    Article  Google Scholar 

  • Maza, I., Kondak, K., Bernard, M., & Ollero, A. (2010). Multi-UAV cooperation and control for load transportation and deployment. Journal of Intelligent and Robotic Systems, 57, 417–449.

    Article  MATH  Google Scholar 

  • Mellinger, D., Lindsey, Q., Shomin, M., & Kumar, V. (2011). Design, modelling, estimation and control for aerial grasping and manipulation. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 2668–2673).

  • Merino, L., Caballero, F., Martinez-de-Dios, J., Maza, I., & Ollero, A. (2012). An unmanned aircraft system for automatic forest fire monitoring and measurement. Journal of Intelligent and Robotic Systems, 65(1), 533–548.

    Article  Google Scholar 

  • Muscio, G., Pierri, F., Trujillo, M. A., Cataldi, E., Giglio, G., & Antonelli, G., et al. (2016). Experiments on coordinated motion of aerial robotic manipulators. In 2016 IEEE international conference on robotics and automation (ICRA), IEEE (pp. 1224–1229).

  • Orsag, M., Korpela, C., Bogdan, S., & Oh, P. (2013a). Lyapunov based model reference adaptive control for aerial manipulation. In 2013 International conference unmanned aircraft systems (ICUAS) (pp. 966–973).

  • Orsag, M., Korpela, C., & Oh, P. (2013b). Modeling and control of MM-UAV: Mobile manipulating unmanned aerial vehicle. Journal of Intelligent and Robotic Systems, 69, 227–240.

    Article  Google Scholar 

  • Ott, C., Dietrich, A., & Albu-Schäffer, A. (2015). Prioritized multi-task compliance control of redundant manipulators. Automatica, 53(1), 416–423.

    Article  MathSciNet  Google Scholar 

  • Ouimet, M., & Lundqvist, K. (2007). Automated verification of completeness and consistency of abstract state machine specifications using a SAT solver. Electronic Notes in Theoretical Computer Science, 190(2), 85–97.

    Article  Google Scholar 

  • Pounds, P., Bersak, D., & Dollar, A. (2011). Vision based mav navigation in unknown and unstructured environments. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 2491–2498).

  • Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., & Leibs, J., et al. (2009). ROS: An open-source robot operating system. In ICRA workshop on open source software.

  • Ruggiero, F., Trujillo, M., Cano, R., Ascorbe, H., Viguria, A., & Perez, C., et al. (2015). A multilayer control for multirotor uavs equipped with a servo robot arm. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 4014–4020).

  • Santamaria, D., Alarcon, F., Jimenez, A., Viguria, A., Bejar, M., & Ollero, A. (2012). Model-based design, development and validation for uas critical software. Journal of Intelligent and Robotic Systems, 65, 103–114.

    Article  Google Scholar 

  • Siciliano, B. (1990). Kinematic control of redundant robot manipulators: A tutorial. Journal of Intelligent and Robotic Systems, 3(3), 201–212.

    Article  Google Scholar 

  • Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics-modelling, planning and control. London, UK: Springer.

    Google Scholar 

  • Simetti, E., Casalino, G., Torelli, S., Sperindé, A., & Turetta, A. (2013). Floating underwater manipulation: Developed control methodology and experimental validation within the TRIDENT project. Journal of Field Robotics, 31(3), 364–385.

    Article  Google Scholar 

  • VICON (Ltd.) Vicon motion systems. http://www.vicon.com.

Download references

Acknowledgments

This research has been supported by the European Commission’s 7th Framework Program under Grant Agreement No. 287617 (IP Project ARCAS-Aerial Robotics Cooperative Assembly system) and Grant Agreement No. 608849 (IP Project EUROC-European Robotics Challenges), and by the European Commission’s Horizon 2020 Program under Grant Agreement No. 644271 (IP Project AEROARMS-AErial RObotic system integrating multiple ARMS and advanced manipulation capabilities for inspection and maintenance).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pierri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baizid, K., Giglio, G., Pierri, F. et al. Behavioral control of unmanned aerial vehicle manipulator systems. Auton Robot 41, 1203–1220 (2017). https://doi.org/10.1007/s10514-016-9590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9590-0

Keywords

Navigation