Skip to main content
Log in

Experimental reflectance study of methane and ethane ice at Titan’s surface conditions

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Cassini’s Visible and Infrared Mapping Spectrometer (VIMS) has provided evidence of several different hydrocarbons on the surface of Titan using seven atmospheric windows. Methane (CH4) and ethane (C2H6) are suggested to exist in both the liquid and solid states on Titan. Even if the average surface temperature (90–94 K) of Titan is clearly in the liquid stability field of both CH4 and C2H6, the particles can condense in the atmosphere (∼65 km for C2H6 and lower stratosphere for CH4 Anderson et al. in Icarus, 243:129–138, 2014) and precipitate allowing them to melt and/or sublimate. It is also suggested that these liquids can freeze on the surface due to evaporative cooling. We conducted a laboratory study at Titan surface conditions to determine the phase change of CH4 and C2H6 and to test if they would freeze on the surface of Titan. Using NIR reflectance spectroscopy, we calculated the reflectivity ratio (\(R_{\mathrm{solid}}/R_{\mathrm{liquid}}\)) of CH4 and C2H6 of 1.08 and 1.36, respectively, suggesting an 8% increase in reflectivity for CH4 and a 36% increase for C2H6 during phase change. The low albedo in liquid phase for both CH4 and C2H6 is consistent with observations made by VIMS in both Titan’s northern and southern latitudes. We also find the evaporation rate of amorphous CH4 close to Titan conditions, which is \(9.0 \pm 0.3 \times 10^{-5}~\mbox{kg}\,\mbox{s}^{-1}\,\mbox{m}^{-2}\) at 87 K and we estimated a sublimation rate of \(0.22 \times 10^{-5}~\mbox{kg}\,\mbox{s}^{-1}\,\mbox{m}^{-2}\) at 83 K for a 1.5 bar N2 atmosphere. The freezing rate of ∼46 m/year for C2H6 was observed whereas, for CH4, we observed that CH4 does not freeze at 87 K due to a high N2 dissolution rate. However, the viscosity of CH4 increases with a decreasing temperature that results in amorphous CH4. The results show a remarkable difference between the formation of ice for two liquids with different N2 dissolution rates. Consequently, using the results obtained from the laboratory study we predict that the observed change is albedo during and after rainfall on Titan is caused by CH4 due to evaporative cooling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams, K.A., Jacobsen, S.D., Liu, Z., Thomas, S.-M., Somayazulu, M., Jurdy, D.M.: Optical reflectivity of solid and liquid methane: application to spectroscopy of Titan’s hydrocarbon lakes. Geophys. Res. Lett. 39, L04309 (2012). doi:10.1029/2011GL049710

    ADS  Google Scholar 

  • Anderson, C.M., Samuelson, R.E., Achterberg, R.K., Barnes, J.W., Flasar, F.M.: Subsidence-induced methane clouds in Titan’s winter polar stratosphere and upper troposphere. Icarus 243, 129–138 (2014)

    Article  ADS  Google Scholar 

  • Arning, H.J., Tibulski, K., Dorfmüller, T.: Collision-induced spectra of simple liquids. Ber. Bunsenges. Phys. Chem. 85, 1068–1071 (1981). doi:10.1002/bbpc.19810851129

    Article  Google Scholar 

  • Barnes, J., Buratti, B., Turtle, E., Bow, J., Dalba, P., Perry, J., Brown, R., Rodriguez, S., Mouelic, S.L., Baines, K., Sotin, C., Lorenz, R., Malaska, M., McCord, T., Clark, R., Jaumann, R., Hayne, P., Nicholson, P., Soderblom, J., Soderblom, L.: Precipitation-induced surface brightenings seen on Titan by Cassini VIMS and ISS. Planet. Sci. 2, 1 (2013). doi:10.1186/2191-2521-2-1

    Article  ADS  Google Scholar 

  • Battino, R., Rettich, T.R., Tominaga, T.: The solubility of nitrogen and air in liquids. J. Phys. Chem. Ref. Data 13, 563–600 (1984). doi:10.1063/1.555713

    Article  ADS  Google Scholar 

  • Boudin, N., Schutte, W.A., Greenberg, J.M.: Constraints on the abundances of various molecules in interstellar ice: laboratory studies and astrophysical implications. Astron. Astrophys. 331, 749–759 (1998)

    ADS  Google Scholar 

  • Brown, M.E., Barkume, K.M., Blake, G.A., Schaller, E.L., Rabinowitz, D.L., Roe, H.G., Trujillo, C.A.: Methane and ethane on the bright Kuiper belt object 2005 FY9. Astron. J. 133, 284 (2007)

    Article  ADS  Google Scholar 

  • Brown, R.H., Soderblom, L.A., Soderblom, J.M., Clark, R.N., Jaumann, R., Barnes, J.W., Sotin, C., Buratti, B., Baines, K.H., Nicholson, P.D.: The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454, 607–610 (2008). doi:10.1038/nature07100

    Article  ADS  Google Scholar 

  • Calvani, P., Cunsolo, S., Lupi, S., Nucara, A.: The near-infrared spectrum of solid CH4. J. Chem. Phys. 96, 7372 (1992). doi:10.1063/1.462440

    Article  ADS  Google Scholar 

  • Chevrier, V.F., Luspay-Kuti, A., Singh, S.: Experimental Study of Nitrogen Dissolution in Methane-Ethane Mixtures Under Titan Surface Conditions (#2763). LPSC, vol. XLVI. Woodlands, Houston (2015)

    Google Scholar 

  • Cordier, D., Mousis, O., Lunine, J.I., Lavvas, P., Vuitton, V.: ERRATUM: An estimate of the chemical composition of Titan’s lakes. Astrophys. J. Lett. 707, L128 (2009). Astrophys. J. Lett. 768(1), L23 (2013)

    Article  ADS  Google Scholar 

  • DeMeo, F.E., Dumas, C., de Bergh, C., Protopapa, S., Cruikshank, D.P., Geballe, T.R., Alvarez-Candal, A., Merlin, F., Barucci, M.A.: A search for ethane on Pluto and Triton. Icarus 208, 412–424 (2010). doi:10.1016/j.icarus.2010.01.014

    Article  ADS  Google Scholar 

  • Dows, D.A.: Absolute infrared intensities in crystalline acetylene and ethane. Spectrochim. Acta 22, 1479–1481 (1966). doi:10.1016/0371-1951(66)80141-8

    Article  ADS  Google Scholar 

  • Elachi, C.: Space imaging radar in planetary exploration and earth observation. AIAA J. 39(4), 553–563 (2001)

    Article  ADS  Google Scholar 

  • Fulchignoni, M., Ferri, F., Angrilli, F., Ball, A.J., Bar-Nun, A., Barucci, M.A., Bettanini, C., Bianchini, G., Borucki, W., Colombatti, G., Coradini, M., Coustenis, A., Debei, S., Falkner, P., Fanti, G., Flamini, E., Gaborit, V., Grard, R., Hamelin, M., Harri, A.M., Hathi, B., Jernej, I., Leese, M.R., Lehto, A., Lion Stoppato, P.F., López-Moreno, J.J., Mäkinen, T., McDonnell, J.A.M., McKay, C.P., Molina-Cuberos, G., Neubauer, F.M., Pirronello, V., Rodrigo, R., Saggin, B., Schwingenschuh, K., Seiff, A., Simões, F., Svedhem, H., Tokano, T., Towner, M.C., Trautner, R., Withers, P., Zarnecki, J.C.: In situ measurements of the physical characteristics of Titan’s environment. Nature 438, 785–791 (2005). doi:10.1038/nature04314

    Article  ADS  Google Scholar 

  • Graves, S.D.B., McKay, C.P., Griffith, C.A., Ferri, F., Fulchignoni, M.: Rain and hail can reach the surface of Titan. Planet. Space Sci. 56(3), 346–357 (2008). doi:10.1016/j.pss.2007.11.001

    Article  ADS  Google Scholar 

  • Grundy, W.: The temperature-dependent spectrum of methane ice I between 0.7 and 5 μm and opportunities for near-infrared remote thermometry. Icarus 155, 486–496 (2002). doi:10.1006/icar.2001.6726

    Article  ADS  Google Scholar 

  • Hayes, A., Aharonson, O., Callahan, P., Elachi, C., Gim, Y., Kirk, R., Lewis, K., et al.: Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys. Res. Lett. 35(9), L0204 (2008)

    Article  Google Scholar 

  • Haltrin, V.I.: Absorption and scattering of light in natural waters. In: Light Scattering Reviews, pp. 445–486 (2006)

    Chapter  Google Scholar 

  • Hudson, R.L., Moore, M.H., Raines, L.L.: Ethane ices in the outer Solar System: spectroscopy and chemistry. Icarus 203, 677–680 (2009). doi:10.1016/j.icarus.2009.06.026

    Article  ADS  Google Scholar 

  • Hunten, D.M.: The sequestration of ethane on Titan in smog particles. Nature 443, 669–670 (2006). doi:10.1038/nature05157

    Article  ADS  Google Scholar 

  • Jennings, D.E., Flasar, F.M., Kunde, V.G., Samuelson, R.E., Pearl, J.C., Nixon, C.A., Carlson, R.C., Mamoutkine, A.A., Brasunas, J.C., Guandique, E., Achterberg, R.K., Bjoraker, G.L., Romani, P.N., Segura, M.E., Albright, S.A., Elliott, M.H., Tingley, J.S., Calcutt, S., Coustenis, A., Courtin, R.: Titan’s surface brightness temperatures. Astrophys. J. 691, L103–L105 (2009). doi:10.1088/0004-637X/691/2/L103

    Article  ADS  Google Scholar 

  • Jennings, D.E., Cottini, V., Nixon, C.A., Achterberg, R.K., Flasar, F.M., Kunde, V.G., Romani, P.N., Samuelson, R.E., Mamoutkine, A., Gorius, N.J.P., Coustenis, A.: Surface temperatures on Titan during northern winter and spring. Astrophys. J. Lett. 816(1), L17 (2016)

    Article  ADS  Google Scholar 

  • Konstantinov, V.A.: Rotation of the methyl groups and thermal conductivity of molecular crystals: ethane. Low Temp. Phys. 32, 689 (2006). doi:10.1063/1.2216284

    Article  ADS  Google Scholar 

  • Lee, S.: Infrared spectroscopy of methane and ethane ices. In: Implications for Astronomy Studies, NCUR 2012 (2012).

    Google Scholar 

  • Lorenz, R.D., Lunine, J.I.: Titan’s surface reviewed: the nature of bright and dark terrain. Planet. Space Sci. 45, 981–992 (1997). doi:10.1016/S0032-0633(97)00087-1

    Article  ADS  Google Scholar 

  • Lorenz, R.D., Lunine, J.I., McKay, C.P.: Titan under a red giant sun: a new kind of “habitable” Moon. Geophys. Res. Lett. 24, 2905–2908 (1997)

    Article  ADS  Google Scholar 

  • Lorenz, R.D., Kirk, R.L., Hayes, A.G., Anderson, Y.Z., Lunine, J.I., Tokano, T., Turtle, E.P., Malaska, M.J., Soderblom, J.M., Lucas, A., Karatekin, Ö.: A radar map of Titan seas: tidal dissipation and ocean mixing through the throat of Kraken. Icarus 237, 9–15 (2014)

    Article  ADS  Google Scholar 

  • Luspay-Kuti, A., Chevrier, V.F., Wasiak, F.C., Roe, L.A., Welivitiya, W.D.D.P., Cornet, T., Singh, S., Rivera-Valentin, E.G.: Experimental simulations of CH4 evaporation on Titan. Geophys. Res. Lett. 39, L23203 (2012). doi:10.1029/2012GL054003

    Article  ADS  Google Scholar 

  • Luspay-Kuti, A., Chevrier, V.F., Cordier, D., Rivera-Valentin, E.G., Singh, S., Wagner, A., Wasiak, F.C.: Experimental constraints on the composition and dynamics of Titan’s polar lakes. Earth Planet. Sci. Lett. 410, 75–83 (2015). doi:10.1016/j.epsl.2014.11.023

    Article  ADS  Google Scholar 

  • McCord, T.B., Hayne, P., Combe, J.-P., Hansen, G.B., Barnes, J.W., Rodriguez, S., Le Mouélic, S., Baines, E.K.H., Buratti, B.J., Sotin, C., Nicholson, P., Jaumann, R., Nelson, R., (the Cassini VIMS Team): Titan’s surface: search for spectral diversity and composition using the Cassini VIMS investigation. Icarus 194, 212–242 (2008). doi:10.1016/j.icarus.2007.08.039

    Article  ADS  Google Scholar 

  • Mitri, G., Showman, A.P., Lunine, J.I., Lorenz, R.D.: Hydrocarbon lakes on Titan. Icarus 186, 385–394 (2007)

    Article  ADS  Google Scholar 

  • Moerchen, M.M.: Springtime sighting at Titan’s coastline. Science 345(6195), 414–415 (2014)

    Article  ADS  Google Scholar 

  • Mousis, O., Lunine, J., Hayes, A., Hofgartner, J.: The fate of ethane in Titan’s hydrocarbon lakes and seas. Icarus 270, 37–40 (2016). 0019–1035. doi:10.1016/j.icarus.2015.06.024

    Article  ADS  Google Scholar 

  • Orbriot, J., Fondere, F., Marteau, P., Vu, H., Kobashi, K.: Far-infrared spectra of solid CH4 under high pressure. Chem. Phys. Lett. 60(1), 90–94 (1978)

    Article  ADS  Google Scholar 

  • Patel, C.K.N., Nelson, E.T., Kerl, R.J.: Opto-acoustic study of weak optical absorption of liquid methane. Nature 286, 368–370 (1980). doi:10.1038/286368a0

    Article  ADS  Google Scholar 

  • Pearl, J., Ngoh, M., Ospina, M., Khanna, R.: Optical constants of solid methane and ethane from 10,000 to 450 cm−1. J. Geophys. Res., Planets 96, 17477–17482 (1991). doi:10.1029/91JE01741

    Article  ADS  Google Scholar 

  • Porco, C.C., Baker, E., John, B., Beurle, K.: Imaging of Titan from the Cassini spacecraft. Nature 434(7030), 159 (2005)

    Article  ADS  Google Scholar 

  • Quirico, E., Schmitt, B.: Near-infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: implications for Triton and Pluto. Icarus 127, 354–378 (1997)

    Article  ADS  Google Scholar 

  • Quirico, E., Douté, S., Schmitt, B., de Bergh, C., Cruikshank, D.P., Owen, T.C., Geballe, T.R., Roush, T.L.: Composition, physical state, and distribution of ices at the surface of Triton. Icarus 139, 159–178 (1999)

    Article  ADS  Google Scholar 

  • Ramaprasad, K.R., Caldwell, J., McClure, D.S.: The vibrational overtone spectrum of liquid methane in the visible and near infrared: applications to planetary studies. Icarus 35, 400–409 (1978). doi:10.1016/0019-1035(78)90092-1

    Article  ADS  Google Scholar 

  • Savoie, R., Fournier, R.P.: Far-infrared spectra of condensed methane and methane-d4. Chem. Phys. Lett. 7, 1–3 (1970). doi:10.1016/0009-2614(70)80232-9

    Article  ADS  Google Scholar 

  • Schutte, M.H.M., Prins, K.O., Trappeniers, N.J.: Nuclear magnetic resonance in solid ethane at high pressure: I. Proton spin relaxation. Physica B, C 144, 152–172 (1987). doi:10.1016/0378-4363(87)90031-3

    Article  ADS  Google Scholar 

  • Singh, S., Combe, J.P., Cordier, D., Wagner, A., Chevrier, V.F., McMahon, Z.: Experimental determination of acetylene and ethylene solubility in liquid methane and ethane: implications to Titan’s surface. Geochim. Cosmochim. Acta 208, 86–101 (2017)

    Article  ADS  Google Scholar 

  • Soderblom, J.M., Barnes, J.W., Brown, R.H., Hayes, A.G., Perry, J.E., Soderblom, L.A., Turtle, E.P.: Frozen hydrocarbon ponds on titan: implications for Titan’s lakes and seas. In: AAS/Division for Planetary Sciences Meeting Abstracts, p. 46 (2014)

    Google Scholar 

  • Stofan, E.R., Elachi, C., Lunine, J.I., Lorenz, R.D., Stiles, B., Mitchell, K.L., Ostro, S., Soderblom, L., Wood, C., Zebker, H., Wall, S., Janssen, M., Kirk, R., Lopes, R., Paganelli, F., Radebaugh, J., Wye, L., Anderson, Y., Allison, M., Boehmer, R., Callahan, P., Encrenaz, P., Flamini, E., Francescetti, G., Gim, Y., Hamilton, G., Hensley, S., Johnson, W.T.K., Kelleher, K., Muhleman, D., Paillou, P., Picardi, G., Posa, F., Roth, L., Seu, R., Shaffer, S., Vetrella, S., West, R.: The lakes of Titan. Nature 445, 61–64 (2007). doi:10.1038/nature05438

    Article  ADS  Google Scholar 

  • Thompson, W.R., Zollweg, J.A., Gabis, D.H.: Vapor-liquid equilibrium thermodynamics of {N2} + CH4: model and Titan applications. Icarus 97, 187–199 (1992). doi:10.1016/0019-1035(92)90127-S

    Article  ADS  Google Scholar 

  • Tokano, T.: Impact of seas/lakes on polar meteorology of Titan: simulation by a coupled GCM-Sea model. Icarus 204(2), 619–636 (2009)

    Article  ADS  Google Scholar 

  • Turtle, E.P., Perry, J.E., McEwen, A.S., DelGenio, A.D., Barbara, J., West, R.A., Dawson, D.D., Porco, C.C.: Cassini imaging of Titan’s high-latitude lakes, clouds, and South-polar surface changes. Geophys. Res. Lett. 36, L0220 (2009). doi:10.1029/2008GL036186

    Article  Google Scholar 

  • Turtle, E.P., Perry, J.E., Hayes, A.G., Lorenz, R.D., Barnes, J.W., McEwen, A.S., West, R.A., Del Genio, A.D., Barbara, J.M., Lunine, J.I., Schaller, E.L., Ray, T.L., Lopes, R.M.C., Stofan, E.R.: Rapid and extensive surface changes near Titan’s equator: evidence of April showers. Science 331, 1414–1417 (2011). doi:10.1126/science.1201063

    Article  ADS  Google Scholar 

  • Wasiak, F.C., Luspay-Kuti, A., Welivitiya, W.D.D.P., Roe, L.A., Chevrier, V.F., Blackburn, D.G., Cornet, T.: A facility for simulating Titan’s environment. Adv. Space Res. 51, 1213–1220 (2013). doi:10.1016/j.asr.2012.10.020

    Article  ADS  Google Scholar 

  • Wisnosky, M.G., Eggers, D.F., Fredrickson, L.R., Decius, J.C.: The vibrational spectra of solid II ethane and ethane-d6. J. Chem. Phys. 79, 3505 (1983). doi:10.1063/1.446203

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by NASA Outer Planet Research Program #NNX10AE10G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Singh, S., Wagner, A. et al. Experimental reflectance study of methane and ethane ice at Titan’s surface conditions. Astrophys Space Sci 362, 184 (2017). https://doi.org/10.1007/s10509-017-3166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3166-0

Keywords

Navigation