Skip to main content
Log in

Distribution of multi-virulence factors among Aeromonas spp. isolated from diseased Xiphophorus hellerii

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Changes in water quality and environmental factors have been reported to play key roles on the health and disease susceptibility of the ornamental fish Xiphophorus hellerii (sword tail). This can further be decided by the natural distribution of pathogens with enhanced virulence properties in the aquatic system. As Aeromonas spp. are the major fish pathogens, a detailed analysis on its association with the disease of X.hellerii was conducted in the study. Here, bacterial isolation has been carried out from the surface, gill and intestine of diseased fish, and also from water samples. The twelve bacterial isolates obtained were identified biochemically and also by 16S rDNA sequence analysis as Aeromonas spp.. Among the various virulence properties screened by in vitro and PCR-based methods, most of the Aeromonas spp. were found to be positive for multiple virulence properties. Further disease challenge using the highly virulent Aeromonas veronii XhG1.2 in X. hellerii showed remarkable histopathological changes of the gill, liver, and intestine in the treated fish. This confirmed the hyper -pathogenic potential of XhG1.2 as the disease occurred within a short period of 24 h. The identification of broad range of virulence factors among the fish pathogenic bacterial isolates of aquatic environment indicates the need for periodic screening to predict the threat to aquatic life especially fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abdelhamed H, Ibrahim I, Baumgartner W, Lawrence ML, Karsi A (2017) Characterization of histopathological and ultrastructural changes in channel catfish experimentally infected with virulent Aeromonas hydrophila. Front Microbiol 8:1519

    PubMed  PubMed Central  Google Scholar 

  • Ananth A, Rajan MR, Sivakumar P (2015) Isolation, identification, enzyme productivity, antibacterial activity and molecular characterization of intestinal bacteria of ornamental fish Koi Carp (Cyprinus carpio Var Koi) and it’s role on growth. Indian J Appl Res 4(7):582–585

    Google Scholar 

  • Austin B, Austin DA (2012) Bacterial fish pathogens; diseases of farmed and wild fish. Springer, New York

    Google Scholar 

  • Baldissera MD, Souza CF, Parmeggiani B, Leipnitz G, Verdi CM, Santos RV, Baldisserotto B (2018) The disturbance of antioxidant/oxidant balance in fish experimentally infected by Aeromonas caviae: relationship with disease pathophysiology. Microb Pathog 122:53–57

    PubMed  CAS  Google Scholar 

  • Banerjee G, Nandi A, Ray AK (2016) Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Arch Microbiol 199:115–124

    PubMed  Google Scholar 

  • Beaz Hidalgo R, Figueras MJ (2013) Aeromonas spp . whole genomes and virulence factors implicated in fish disease. J Fish Dis 36:371–388

    PubMed  CAS  Google Scholar 

  • Casabianca A, Orlandi C, Barbieri F, Sabatini L, di Cesare A, Sisti D, Pasquaroli S, Magnani M, Citterio B (2015) Effect of starvation on survival and virulence expression of Aeromonas hydrophila from different sources. Arch Microbiol 197:431–438

    PubMed  CAS  Google Scholar 

  • Chenia HY, Duma S (2016) Characterization of virulence, cell surface characteristics and biofilm-forming ability of Aeromonas spp. isolates from fish and sea water. J Fish Dis 40(3):339–350

    PubMed  Google Scholar 

  • Cruz PM, Ibanez AL, Hermosillo OAM, Saad HCR (2012) Use of probiotics in aquaculture. ISRN Microbiol 2012:96845

    Google Scholar 

  • da Silva JLS, de Holanda Cavalcante D, de Carvalho FCT, dos Fernandes Vieira RHS et al (2017) Aquatic microbiota diversity in the culture of nile tilapia (Oreochromis niloticus) using bioflocs or periphyton: virulence factors and biofilm formation. Acta Sci Anim Sci 38(3)

  • Daskalov H (2006) The importance of Aeromonas hydrophila in food safety. Food Control 17:474–483

    Google Scholar 

  • Dong HT, Techatanakitarnan C, Jindakittikul P, Thaiprayoon A, Taengphu S, Charoensapsri W, Senapin S (2017) Aeromonas jandaei and Aeromonas veronii caused disease and mortality in Nile tilapia, Oreochromis niloticus (L.). J Fish Dis 40(10):1395–1403

    PubMed  CAS  Google Scholar 

  • Elgendy MY, Soliman WS, Abbas WT et al (2017) Investigation of some virulence determents in Aeromonas hydrophila strains obtained from different polluted aquatic environments. Jordan J Biol Sci 10:265–272

    CAS  Google Scholar 

  • Erova TE, Sha J, Horneman AJ, Borchardt MA, Khajanchi BK, Fadl AA, Chopra AK (2007) Identification of a new hemolysin from diarrheal isolate SSU of Aeromonas hydrophila. FEMS Microbiol Lett 275:301–311

    PubMed  CAS  Google Scholar 

  • Haenen O (2017) Major bacterial diseases affecting aquaculture. 10–11

  • Hamid Salari Joo, Mohammad Reza Kalbassi, Seyed Ali Johari (2018) "Hematological and histopathological effects of silver nanoparticles in rainbow trout (Oncorhynchus mykiss)—how about increase of salinity?." Environmental Science and Pollution Research 25(16):15449–15461

    PubMed  CAS  Google Scholar 

  • Harikrishnan R, Balasundaram C, Heo M-S (2010) Herbal supplementation diets on hematology and innate immunity in goldfish against Aeromonas hydrophila. Fish Shellfish Immunol 28(2):354–361

    PubMed  CAS  Google Scholar 

  • Hassan MA, Noureldin EA, Mahmoud MA, Fita NA (2017) Molecular identification and epizootiology of Aeromonas veronii infection among farmed Oreochromis niloticus in Eastern Province, KSA. Egypt J Aquat Res 43(2):161–167

    Google Scholar 

  • Heuzenroeder MW, Wong CY, Flower RL (1999) Distribution of two hemolytic toxin genes in clinical and environmental isolates of Aeromonas spp.: correlation with virulence in a suckling mouse model. FEMS Microbiol Lett 174:131–136

    PubMed  CAS  Google Scholar 

  • Hu M, Wang N, Pan ZH et al (2012) Identity and virulence properties of Aeromonas isolates from diseased fish, healthy controls and water environment in China. Lett Appl Microbiol 55:224–233

    PubMed  CAS  Google Scholar 

  • Igbinosa IH, Igumbor EU, Aghdasi F et al (2012) Emerging Aeromonas species infections and their significance in public health. Sci World J 2012:625023

    Google Scholar 

  • In-Young N, Kiseong J (2007) Rapid detection of virulence factors of Aeromonas isolated from a trout farm by Hexaplex-PCR. J Microbiol 45(4):297–304

    Google Scholar 

  • Janda JM (2002) Aeromonas and Plesiomonas. In: Sussman M (ed) Molecular Medical Microbiology. Academic, San Diego, pp 1237–1270

    Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, Pathogenicity, and Infection. Clin Microbiol Rev 23:35–73. https://doi.org/10.1128/CMR.00039-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jasim B, Aswathy Joseph A, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204

    PubMed  CAS  Google Scholar 

  • John N, Abdulla MH (2012) Prevalence, distribution and drug resistance of motile aeromonads in freshwater ornamental fishes. Indian J Fish 59(2):161–164

    Google Scholar 

  • John N, Abdulla MH (2013) Distribution, extracellular virulence factors and drug resistance of motile aeromonads in fresh water ornamental fishes and associated carriage water. Int J Aquacult 3

  • Kingombe CIB, Huys G, Tonolla M, Albert MJ, Swings J, Peduzzi R, Jemmy T (1999) PCR detection, characterization and distribution of virulence genes in Aeromonas spp. Appl Environ Microbiol 65:5293–5302

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lakshmi narayanan (2000) Histological Techniques: A Practical Manual (2nd Edition)

  • Kumar S, Mukhopadhyay P, Chatterjee M, Bandyopadhyay MK, Bandyopadhyay M, Ghosh T, Samaddar D (2012) Necrotizing fasciitis caused by Aeromonas caviae. Avicenna journal of medicine, 2(4), 94

    PubMed  PubMed Central  Google Scholar 

  • Loong SK, Khor CS, Jafar FL, AbuBakar S (2016) Utility of 16S rDNA sequencing for identification of rare pathogenic Bacteria. J Clin Lab Anal 30:1056–1060

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lucinda J, Cavalcante DDH, De FCT (2016) Acta Scientiarum Aquatic microbiota diversity in the culture of Nile tilapia (Oreochromis niloticus) using bioflocs or periphyton: virulence factors and biofilm formation. 31910:233–241

  • Madden T (2013) The BLAST sequence analysis tool. In The NCBI Handbook [Internet]. 2nd edition. National Center for Biotechnology Information (US)

  • Marian CM, MacRae IC (1992) Characteristics of 0/129-sensitive motile Aeromonas strains isolated from freshwater on starch-ampicillin agar. Microb Ecol 24(2):215–226

    Google Scholar 

  • Martha Reyes-Becerril, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban MÁ (2017) Enhancing gilthead seabream immune status and protection against bacterial challenge by means of antigens derived from Vibrio parahaemolyticus. Fish & shellfish immunology, 60, 205–218

  • Merino S, Gavin R, Vilches S, Shaw JG, Tomas JM (2003) A colonization factor (production of lateral flagella) of mesophilic Aeromonas spp. is in active in Aeromonas salmonicida strains. Appl Environ Microbiol 69(1):663–667

    PubMed  PubMed Central  CAS  Google Scholar 

  • Palumbo SA, Maxino F, Williams AC, Buchanan RL, Thayer DW (1985) Starch-ampicillin agar for the quantitative detection of Aeromonas hydrophila. Appl Environ Microbiol 50(4):1027–1030

    PubMed  PubMed Central  CAS  Google Scholar 

  • Peatman E, Mohammed H, Kirby A, Shoemaker CA, Yildirim-Aksoy M, Beck BH (2018) Mechanisms of pathogen virulence and host susceptibility in virulent Aeromonas hydrophila infections of channel catfish (Ictalurus punctatus). Aquaculture 482:1–8

    Google Scholar 

  • Romero J, Feijoo CG, Navarrete P (2012) Antibiotics in aquaculture – use, abuse and alternatives. In: Carvalho E (ed) Health and environment in aquaculture. InTech, Rijeka, pp 159–198 ISBN 978-953- 51-0497-1

    Google Scholar 

  • Sen K, Rodgers M (2004) Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: a PCR identification. J Appl Microbiol 97(5):1077–1086

    PubMed  CAS  Google Scholar 

  • Senderovich Y, Ken-Dror S, Vainblat I, Blau D, Izhaki I et al (2012) A molecular study on the prevalence and virulence potential of Aeromonas spp. recovered from patients suffering from diarrhea in Israel. PLoS One 7(2):e30070

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sha J, Kozlova EV, Chopra AK (2002) Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity. Infect Immun 70:1924–1935

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sha J, Galindo C, Pancholi V et al (2003) Differential expression of the enolase gene under in vivo versus in vitro growth conditions of Aeromonas hydrophila. Microb Pathog 34:195–204

    PubMed  CAS  Google Scholar 

  • Sha J, Pillai L, Fadl AA, Galindo CL, Erova TE, Chopra AK (2005) The type III secretion system and cytotoxic enterotoxin alter the virulence of Aeromonas hydrophila. Infect Immun 73(10):6446–6457

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sha J, Wang SF, Suarez G, Sierra JC, Fadl AA, Erova TE, Foltz SM, Khajanchi BK, Silver A, Graf J, Schein CH, Chopra AK (2007) Further characterization of a type III secretion system (T3SS) and of a new effector protein from a clinical isolate of Aeromonas hydrophila–part I. Microb Pathog 43:127–146. https://doi.org/10.1016/j.micpath.2007.05.00

    Article  PubMed  CAS  Google Scholar 

  • Sihag, Sharma (2012) Probiotics: the new ecofriendly alternative measures of disease control for sustainable aquaculture. J Fish Aquat Sci 7(2):72–103

    Google Scholar 

  • Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244

    PubMed  CAS  Google Scholar 

  • Smith KF, Schmidt V, Rosen GE, Amaral-Zettler L (2012) Microbial diversity and potential pathogens in ornamental fish aquarium water. PLoS One 7(9):e39971

    PubMed  PubMed Central  CAS  Google Scholar 

  • Soler L, Figueras MJ, Chacón MR, Vila J, Marco F, Martinez-Murcia AJ, Guarro J (2002) Potential virulence and antimicrobial susceptibility of Aeromonas popoffii recovered from freshwater and seawater. FEMS Immunol Med Microbiol 32(3):243–247

    PubMed  CAS  Google Scholar 

  • Sreedharan K, Philip R, Singh ISB (2012) Virulence potential and antibiotic susceptibility pattern of motile aeromonads associated with freshwater ornamental fish culture systems: a possible threat to public health. Braz J Microbiol 43(2):754–765

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sudheesh PS, Al-ghabshi A, Al-mazrooei N, Al-habsi S (2012) Comparative pathogenomics of bacteria causing infectious diseases in fish. Int J Evol Biol 2012:16

    Google Scholar 

  • Sun J, Zhang X, Gao X, et al (1865) Characterization of virulence properties of Aeromonas veronii isolated from diseased Gibel carp (Carassius gibelio). 5–9. https://doi.org/10.3390/ijms17040496

    PubMed  PubMed Central  Google Scholar 

  • Tomas JM (2012) The main Aeromonas pathogenic factors. ISRN Microbiol 2012:1–22

    Google Scholar 

  • Turska-Szewczuk A, Lindner B, Komaniecka I, Kozinska A, Pekala A, Choma A, Holst O (2013) Structural and immunochemical studies of the lipopolysaccharide from the fish pathogen, Aeromonas bestiarum strain K296, serotype O18. Mar Drugs 11(4):1235–1255

    PubMed  PubMed Central  CAS  Google Scholar 

  • Von Graevenitz A (2007) The role of Aeromonas in diarrhea: a review. Infection 35:59–64. https://doi.org/10.1007/s15010-007-6243-4

    Article  CAS  Google Scholar 

  • Wang G, Clark CG, Liu C, Pucknell C, Munro CK, Kruk TMAC, Caldeira R, Woodward DL, Rodgers FG (2003) Detection and characterization of the Hemolysin genes in Aeromonas hydrophila and Aeromonas sobria by multiplex PCR. J Clin Microbiol 41:1048–1054. https://doi.org/10.1128/JCM.41.3.1048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. https://doi.org/10.1089/10665270050081478

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study is instrumentally supported by the Kerala State Council for Science, Technology, and Environment-Kerala Biotechnology Commission-Young Investigators Programme in Biotechnology (KSCSTE-KBC-YIPB) (Order no. 673/2017/KSCSTE dated 13.10.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyothis Mathew.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experiment with Aeromonas sp. has been carried out with approval from institutional biosafety committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Aswani, R., Jasim, B. et al. Distribution of multi-virulence factors among Aeromonas spp. isolated from diseased Xiphophorus hellerii. Aquacult Int 28, 235–248 (2020). https://doi.org/10.1007/s10499-019-00456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00456-5

Keywords

Navigation